|
|
|
|
|
|
|
import torch |
|
from torch.utils.data import Dataset |
|
import torchvision.transforms as transforms |
|
|
|
import os.path as osp |
|
import os |
|
from PIL import Image |
|
import numpy as np |
|
import json |
|
import cv2 |
|
|
|
from transform import * |
|
|
|
|
|
|
|
class FaceMask(Dataset): |
|
def __init__(self, rootpth, cropsize=(640, 480), mode='train', *args, **kwargs): |
|
super(FaceMask, self).__init__(*args, **kwargs) |
|
assert mode in ('train', 'val', 'test') |
|
self.mode = mode |
|
self.ignore_lb = 255 |
|
self.rootpth = rootpth |
|
|
|
self.imgs = os.listdir(os.path.join(self.rootpth, 'CelebA-HQ-img')) |
|
|
|
|
|
self.to_tensor = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), |
|
]) |
|
self.trans_train = Compose([ |
|
ColorJitter( |
|
brightness=0.5, |
|
contrast=0.5, |
|
saturation=0.5), |
|
HorizontalFlip(), |
|
RandomScale((0.75, 1.0, 1.25, 1.5, 1.75, 2.0)), |
|
RandomCrop(cropsize) |
|
]) |
|
|
|
def __getitem__(self, idx): |
|
impth = self.imgs[idx] |
|
img = Image.open(osp.join(self.rootpth, 'CelebA-HQ-img', impth)) |
|
img = img.resize((512, 512), Image.BILINEAR) |
|
label = Image.open(osp.join(self.rootpth, 'mask', impth[:-3]+'png')).convert('P') |
|
|
|
if self.mode == 'train': |
|
im_lb = dict(im=img, lb=label) |
|
im_lb = self.trans_train(im_lb) |
|
img, label = im_lb['im'], im_lb['lb'] |
|
img = self.to_tensor(img) |
|
label = np.array(label).astype(np.int64)[np.newaxis, :] |
|
return img, label |
|
|
|
def __len__(self): |
|
return len(self.imgs) |
|
|
|
|
|
if __name__ == "__main__": |
|
face_data = '/home/zll/data/CelebAMask-HQ/CelebA-HQ-img' |
|
face_sep_mask = '/home/zll/data/CelebAMask-HQ/CelebAMask-HQ-mask-anno' |
|
mask_path = '/home/zll/data/CelebAMask-HQ/mask' |
|
counter = 0 |
|
total = 0 |
|
for i in range(15): |
|
|
|
|
|
atts = ['skin', 'l_brow', 'r_brow', 'l_eye', 'r_eye', 'eye_g', 'l_ear', 'r_ear', 'ear_r', |
|
'nose', 'mouth', 'u_lip', 'l_lip', 'neck', 'neck_l', 'cloth', 'hair', 'hat'] |
|
|
|
for j in range(i*2000, (i+1)*2000): |
|
|
|
mask = np.zeros((512, 512)) |
|
|
|
for l, att in enumerate(atts, 1): |
|
total += 1 |
|
file_name = ''.join([str(j).rjust(5, '0'), '_', att, '.png']) |
|
path = osp.join(face_sep_mask, str(i), file_name) |
|
|
|
if os.path.exists(path): |
|
counter += 1 |
|
sep_mask = np.array(Image.open(path).convert('P')) |
|
|
|
|
|
mask[sep_mask == 225] = l |
|
cv2.imwrite('{}/{}.png'.format(mask_path, j), mask) |
|
print(j) |
|
|
|
print(counter, total) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|