|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import numpy as np |
|
|
|
|
|
class OhemCELoss(nn.Module): |
|
def __init__(self, thresh, n_min, ignore_lb=255, *args, **kwargs): |
|
super(OhemCELoss, self).__init__() |
|
self.thresh = -torch.log(torch.tensor(thresh, dtype=torch.float)).cuda() |
|
self.n_min = n_min |
|
self.ignore_lb = ignore_lb |
|
self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none') |
|
|
|
def forward(self, logits, labels): |
|
N, C, H, W = logits.size() |
|
loss = self.criteria(logits, labels).view(-1) |
|
loss, _ = torch.sort(loss, descending=True) |
|
if loss[self.n_min] > self.thresh: |
|
loss = loss[loss>self.thresh] |
|
else: |
|
loss = loss[:self.n_min] |
|
return torch.mean(loss) |
|
|
|
|
|
class SoftmaxFocalLoss(nn.Module): |
|
def __init__(self, gamma, ignore_lb=255, *args, **kwargs): |
|
super(SoftmaxFocalLoss, self).__init__() |
|
self.gamma = gamma |
|
self.nll = nn.NLLLoss(ignore_index=ignore_lb) |
|
|
|
def forward(self, logits, labels): |
|
scores = F.softmax(logits, dim=1) |
|
factor = torch.pow(1.-scores, self.gamma) |
|
log_score = F.log_softmax(logits, dim=1) |
|
log_score = factor * log_score |
|
loss = self.nll(log_score, labels) |
|
return loss |
|
|
|
|
|
if __name__ == '__main__': |
|
torch.manual_seed(15) |
|
criteria1 = OhemCELoss(thresh=0.7, n_min=16*20*20//16).cuda() |
|
criteria2 = OhemCELoss(thresh=0.7, n_min=16*20*20//16).cuda() |
|
net1 = nn.Sequential( |
|
nn.Conv2d(3, 19, kernel_size=3, stride=2, padding=1), |
|
) |
|
net1.cuda() |
|
net1.train() |
|
net2 = nn.Sequential( |
|
nn.Conv2d(3, 19, kernel_size=3, stride=2, padding=1), |
|
) |
|
net2.cuda() |
|
net2.train() |
|
|
|
with torch.no_grad(): |
|
inten = torch.randn(16, 3, 20, 20).cuda() |
|
lbs = torch.randint(0, 19, [16, 20, 20]).cuda() |
|
lbs[1, :, :] = 255 |
|
|
|
logits1 = net1(inten) |
|
logits1 = F.interpolate(logits1, inten.size()[2:], mode='bilinear') |
|
logits2 = net2(inten) |
|
logits2 = F.interpolate(logits2, inten.size()[2:], mode='bilinear') |
|
|
|
loss1 = criteria1(logits1, lbs) |
|
loss2 = criteria2(logits2, lbs) |
|
loss = loss1 + loss2 |
|
print(loss.detach().cpu()) |
|
loss.backward() |
|
|