afscomercial commited on
Commit
a0775f9
1 Parent(s): 4b8501f

add readme

Browse files
Files changed (1) hide show
  1. README.md +19 -64
README.md CHANGED
@@ -1,65 +1,20 @@
1
 
2
- ### hugging face
3
-
4
- - repo (lfs) https://huggingface.co/afscomercial/dermatologic
5
- - project folder: models
6
-
7
- ### Clone the Repository
8
-
9
- 1. Navigate to the desired parent directory:
10
- ```sh
11
- cd /path/to/parent/directory
12
- ```
13
-
14
- 2. Clone the repository using Git:
15
- ```sh
16
- git clone https://huggingface.co/afscomercial/dermatologic
17
- ```
18
-
19
- 3. Navigate into the cloned repository:
20
- ```sh
21
- cd dermatologic
22
- ```
23
-
24
- ### hugging face commands
25
- ```sh
26
- huggingface-cli version
27
- ```
28
- ```sh
29
- huggingface-cli whoami
30
- ```
31
- ```sh
32
- huggingface-cli logout
33
- ```
34
-
35
- > **Note:** Ensure you have the `huggingface-cli` installed and you are logged in to your Hugging Face account before running these commands. Parent folder is a git repository and the Models subdirectory is a huggingface lfs repository.
36
-
37
-
38
- ### Setup Virtual Environment and Install Dependencies
39
-
40
- 1. Create a virtual environment:
41
- ```sh
42
- python -m venv env
43
- ```
44
-
45
- 2. Activate the virtual environment:
46
- - On Windows:
47
- ```sh
48
- .\env\Scripts\activate
49
- ```
50
- - On macOS and Linux:
51
- ```sh
52
- source env/bin/activate
53
- ```
54
-
55
- 3. Install `huggingface_hub`:
56
- ```sh
57
- pip install huggingface_hub
58
- ```
59
-
60
- 4. Verify the installation:
61
- ```sh
62
- huggingface-cli version
63
- ```
64
-
65
- > **Note:** Ensure you have Python installed on your system before creating a virtual environment.
 
1
 
2
+ ---
3
+ license: mit
4
+ tags:
5
+ - image-classification
6
+ - resnet50
7
+ task:
8
+ - image-classification
9
+ ---
10
+ # Model Card for Your Model
11
+
12
+ This is a pre-trained ResNet-50 model for image classification. It has been trained on [your dataset description].
13
+
14
+ ## Model Usage
15
+ You can use this model with the Hugging Face API as follows:
16
+ ```python
17
+ from transformers import pipeline
18
+ classifier = pipeline("image-classification", model="username/model_name")
19
+ result = classifier("path_to_image.jpg")
20
+ print(result)