File size: 12,776 Bytes
680f625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Workflows in LlamaIndex\n",
    "\n",
    "\n",
    "This notebook is part of the [Hugging Face Agents Course](https://www.hf.co/learn/agents-course), a free Course from beginner to expert, where you learn to build Agents.\n",
    "\n",
    "![Agents course share](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png)\n",
    "\n",
    "## Let's install the dependencies\n",
    "\n",
    "We will install the dependencies for this unit."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install llama-index datasets llama-index-callbacks-arize-phoenix llama-index-vector-stores-chroma llama-index-utils-workflow llama-index-llms-huggingface-api pyvis -U -q"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And, let's log in to Hugging Face to use serverless Inference APIs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import login\n",
    "\n",
    "login()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Basic Workflow Creation\n",
    "\n",
    "We can start by creating a simple workflow. We use the `StartEvent` and `StopEvent` classes to define the start and stop of the workflow."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Hello, world!'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from llama_index.core.workflow import StartEvent, StopEvent, Workflow, step\n",
    "\n",
    "\n",
    "class MyWorkflow(Workflow):\n",
    "    @step\n",
    "    async def my_step(self, ev: StartEvent) -> StopEvent:\n",
    "        # do something here\n",
    "        return StopEvent(result=\"Hello, world!\")\n",
    "\n",
    "\n",
    "w = MyWorkflow(timeout=10, verbose=False)\n",
    "result = await w.run()\n",
    "result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Connecting Multiple Steps\n",
    "\n",
    "We can also create multi-step workflows. Here we pass the event information between steps. Note that we can use type hinting to specify the event type and the flow of the workflow."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Finished processing: Step 1 complete'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from llama_index.core.workflow import Event\n",
    "\n",
    "\n",
    "class ProcessingEvent(Event):\n",
    "    intermediate_result: str\n",
    "\n",
    "\n",
    "class MultiStepWorkflow(Workflow):\n",
    "    @step\n",
    "    async def step_one(self, ev: StartEvent) -> ProcessingEvent:\n",
    "        # Process initial data\n",
    "        return ProcessingEvent(intermediate_result=\"Step 1 complete\")\n",
    "\n",
    "    @step\n",
    "    async def step_two(self, ev: ProcessingEvent) -> StopEvent:\n",
    "        # Use the intermediate result\n",
    "        final_result = f\"Finished processing: {ev.intermediate_result}\"\n",
    "        return StopEvent(result=final_result)\n",
    "\n",
    "\n",
    "w = MultiStepWorkflow(timeout=10, verbose=False)\n",
    "result = await w.run()\n",
    "result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Loops and Branches\n",
    "\n",
    "We can also use type hinting to create branches and loops. Note that we can use the `|` operator to specify that the step can return multiple types."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Good thing happened\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Finished processing: First step complete.'"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from llama_index.core.workflow import Event\n",
    "import random\n",
    "\n",
    "\n",
    "class ProcessingEvent(Event):\n",
    "    intermediate_result: str\n",
    "\n",
    "\n",
    "class LoopEvent(Event):\n",
    "    loop_output: str\n",
    "\n",
    "\n",
    "class MultiStepWorkflow(Workflow):\n",
    "    @step\n",
    "    async def step_one(self, ev: StartEvent) -> ProcessingEvent | LoopEvent:\n",
    "        if random.randint(0, 1) == 0:\n",
    "            print(\"Bad thing happened\")\n",
    "            return LoopEvent(loop_output=\"Back to step one.\")\n",
    "        else:\n",
    "            print(\"Good thing happened\")\n",
    "            return ProcessingEvent(intermediate_result=\"First step complete.\")\n",
    "\n",
    "    @step\n",
    "    async def step_two(self, ev: ProcessingEvent | LoopEvent) -> StopEvent:\n",
    "        # Use the intermediate result\n",
    "        final_result = f\"Finished processing: {ev.intermediate_result}\"\n",
    "        return StopEvent(result=final_result)\n",
    "\n",
    "\n",
    "w = MultiStepWorkflow(verbose=False)\n",
    "result = await w.run()\n",
    "result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Drawing Workflows\n",
    "\n",
    "We can also draw workflows using the `draw_all_possible_flows` function.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'NoneType'>\n",
      "<class '__main__.ProcessingEvent'>\n",
      "<class '__main__.LoopEvent'>\n",
      "<class 'llama_index.core.workflow.events.StopEvent'>\n",
      "workflow_all_flows.html\n"
     ]
    }
   ],
   "source": [
    "from llama_index.utils.workflow import draw_all_possible_flows\n",
    "\n",
    "draw_all_possible_flows(w)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![drawing](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/llama-index/workflow-draw.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### State Management\n",
    "\n",
    "Instead of passing the event information between steps, we can use the `Context` type hint to pass information between steps. \n",
    "This might be useful for long running workflows, where you want to store information between steps."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Query: What is the capital of France?\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Finished processing: Step 1 complete'"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from llama_index.core.workflow import Event, Context\n",
    "from llama_index.core.agent.workflow import ReActAgent\n",
    "\n",
    "\n",
    "class ProcessingEvent(Event):\n",
    "    intermediate_result: str\n",
    "\n",
    "\n",
    "class MultiStepWorkflow(Workflow):\n",
    "    @step\n",
    "    async def step_one(self, ev: StartEvent, ctx: Context) -> ProcessingEvent:\n",
    "        # Process initial data\n",
    "        await ctx.set(\"query\", \"What is the capital of France?\")\n",
    "        return ProcessingEvent(intermediate_result=\"Step 1 complete\")\n",
    "\n",
    "    @step\n",
    "    async def step_two(self, ev: ProcessingEvent, ctx: Context) -> StopEvent:\n",
    "        # Use the intermediate result\n",
    "        query = await ctx.get(\"query\")\n",
    "        print(f\"Query: {query}\")\n",
    "        final_result = f\"Finished processing: {ev.intermediate_result}\"\n",
    "        return StopEvent(result=final_result)\n",
    "\n",
    "\n",
    "w = MultiStepWorkflow(timeout=10, verbose=False)\n",
    "result = await w.run()\n",
    "result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Multi-Agent Workflows\n",
    "\n",
    "We can also create multi-agent workflows. Here we define two agents, one that multiplies two integers and one that adds two integers."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AgentOutput(response=ChatMessage(role=<MessageRole.ASSISTANT: 'assistant'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='I have handed off the request to an agent who can help you with adding 5 and 3. Please wait for their response.')]), tool_calls=[ToolCallResult(tool_name='handoff', tool_kwargs={'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}, tool_id='call_F97vcIcsvZjfAAOBzzIifW3y', tool_output=ToolOutput(content='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', tool_name='handoff', raw_input={'args': (), 'kwargs': {'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}}, raw_output='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', is_error=False), return_direct=True), ToolCallResult(tool_name='handoff', tool_kwargs={'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}, tool_id='call_jf49ktFRs09xYdOsnApAk2zz', tool_output=ToolOutput(content='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', tool_name='handoff', raw_input={'args': (), 'kwargs': {'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}}, raw_output='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', is_error=False), return_direct=True)], raw={'id': 'chatcmpl-B6Cy54VQkvlG3VOrmdzCzgwcJmVOc', 'choices': [{'delta': {'content': None, 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None}, 'finish_reason': 'stop', 'index': 0, 'logprobs': None}], 'created': 1740819517, 'model': 'gpt-3.5-turbo-0125', 'object': 'chat.completion.chunk', 'service_tier': 'default', 'system_fingerprint': None, 'usage': None}, current_agent_name='addition_agent')"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
    "\n",
    "# Define some tools\n",
    "def add(a: int, b: int) -> int:\n",
    "    \"\"\"Add two numbers.\"\"\"\n",
    "    return a + b\n",
    "\n",
    "def multiply(a: int, b: int) -> int:\n",
    "    \"\"\"Multiply two numbers.\"\"\"\n",
    "    return a * b\n",
    "\n",
    "llm = HuggingFaceInferenceAPI(model_name=\"Qwen/Qwen2.5-Coder-32B-Instruct\")\n",
    "\n",
    "# we can pass functions directly without FunctionTool -- the fn/docstring are parsed for the name/description\n",
    "multiply_agent = ReActAgent(\n",
    "    name=\"multiply_agent\",\n",
    "    description=\"Is able to multiply two integers\",\n",
    "    system_prompt=\"A helpful assistant that can use a tool to multiply numbers.\",\n",
    "    tools=[multiply], \n",
    "    llm=llm,\n",
    ")\n",
    "\n",
    "addition_agent = ReActAgent(\n",
    "    name=\"add_agent\",\n",
    "    description=\"Is able to add two integers\",\n",
    "    system_prompt=\"A helpful assistant that can use a tool to add numbers.\",\n",
    "    tools=[add], \n",
    "    llm=llm,\n",
    ")\n",
    "\n",
    "# Create the workflow\n",
    "workflow = AgentWorkflow(\n",
    "    agents=[multiply_agent, addition_agent],\n",
    "    root_agent=\"multiply_agent\"\n",
    ")\n",
    "\n",
    "# Run the system\n",
    "response = await workflow.run(user_msg=\"Can you add 5 and 3?\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}