File size: 30,696 Bytes
c187244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "98f5e36a-da49-4ae2-8c74-b910a2f992fc",
   "metadata": {},
   "source": [
    "# Agent\n",
    "\n",
    "In this notebook, **we're going to build a simple agent using using LangGraph**.\n",
    "\n",
    "This notebook is part of the <a href=\"https://www.hf.co/learn/agents-course\">Hugging Face Agents Course</a>, a free course from beginner to expert, where you learn to build Agents.\n",
    "\n",
    "![Agents course share](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png)\n",
    "\n",
    "As seen in the Unit 1, an agent needs 3 steps as introduced in the ReAct architecture :\n",
    "[ReAct](https://react-lm.github.io/), a general agent architecture.\n",
    "  \n",
    "* `act` - let the model call specific tools \n",
    "* `observe` - pass the tool output back to the model \n",
    "* `reason` - let the model reason about the tool output to decide what to do next (e.g., call another tool or just respond directly)\n",
    "\n",
    "\n",
    "![Agent](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/LangGraph/Agent.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "63edff5a-724b-474d-9db8-37f0ae936c76",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "%pip install -q -U langchain_openai langchain_core langgraph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "356a6482",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "# Please setp your own key.\n",
    "os.environ[\"OPENAI_API_KEY\"]=\"sk-xxxxxx\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "id": "71795ff1-d6a7-448d-8b55-88bbd1ed3dbe",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import base64\n",
    "from typing import List\n",
    "from langchain.schema import HumanMessage\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "\n",
    "vision_llm = ChatOpenAI(model=\"gpt-4o\")\n",
    "\n",
    "def extract_text(img_path: str) -> str:\n",
    "    \"\"\"\n",
    "    Extract text from an image file using a multimodal model.\n",
    "\n",
    "    Args:\n",
    "        img_path: A local image file path (strings).\n",
    "\n",
    "    Returns:\n",
    "        A single string containing the concatenated text extracted from each image.\n",
    "    \"\"\"\n",
    "    all_text = \"\"\n",
    "    try:\n",
    "       \n",
    "        # Read image and encode as base64\n",
    "        with open(img_path, \"rb\") as image_file:\n",
    "            image_bytes = image_file.read()\n",
    "\n",
    "        image_base64 = base64.b64encode(image_bytes).decode(\"utf-8\")\n",
    "\n",
    "        # Prepare the prompt including the base64 image data\n",
    "        message = [\n",
    "            HumanMessage(\n",
    "                content=[\n",
    "                    {\n",
    "                        \"type\": \"text\",\n",
    "                        \"text\": (\n",
    "                            \"Extract all the text from this image. \"\n",
    "                            \"Return only the extracted text, no explanations.\"\n",
    "                        ),\n",
    "                    },\n",
    "                    {\n",
    "                        \"type\": \"image_url\",\n",
    "                        \"image_url\": {\n",
    "                            \"url\": f\"data:image/png;base64,{image_base64}\"\n",
    "                        },\n",
    "                    },\n",
    "                ]\n",
    "            )\n",
    "        ]\n",
    "\n",
    "        # Call the vision-capable model\n",
    "        response = vision_llm.invoke(message)\n",
    "\n",
    "        # Append extracted text\n",
    "        all_text += response.content + \"\\n\\n\"\n",
    "\n",
    "        return all_text.strip()\n",
    "    except Exception as e:\n",
    "        # You can choose whether to raise or just return an empty string / error message\n",
    "        error_msg = f\"Error extracting text: {str(e)}\"\n",
    "        print(error_msg)\n",
    "        return \"\"\n",
    "\n",
    "llm = ChatOpenAI(model=\"gpt-4o\")\n",
    "\n",
    "def divide(a: int, b: int) -> float:\n",
    "    \"\"\"Divide a and b.\"\"\"\n",
    "    return a / b\n",
    "\n",
    "tools = [\n",
    "    divide,\n",
    "    extract_text\n",
    "]\n",
    "llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a2cec014-3023-405c-be79-de8fc7adb346",
   "metadata": {},
   "source": [
    "Let's create our LLM and prompt it with the overall desired agent behavior."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "id": "deb674bc-49b2-485a-b0c3-4d7b05a0bfac",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from typing import TypedDict, Annotated, List, Any, Optional\n",
    "from langchain_core.messages import AnyMessage\n",
    "from langgraph.graph.message import add_messages\n",
    "class AgentState(TypedDict):\n",
    "    # The input document\n",
    "    input_file:  Optional[str]  # Contains file path, type (PNG)\n",
    "    messages: Annotated[list[AnyMessage], add_messages]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "id": "d061813f-ebc0-432c-91ec-3b42b15c30b6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain_core.messages import HumanMessage, SystemMessage\n",
    "from langchain_core.utils.function_calling import convert_to_openai_tool\n",
    "\n",
    "\n",
    "# AgentState\n",
    "def assistant(state: AgentState):\n",
    "    # System message\n",
    "    textual_description_of_tool=\"\"\"\n",
    "extract_text(img_path: str) -> str:\n",
    "    Extract text from an image file using a multimodal model.\n",
    "\n",
    "    Args:\n",
    "        img_path: A local image file path (strings).\n",
    "\n",
    "    Returns:\n",
    "        A single string containing the concatenated text extracted from each image.\n",
    "divide(a: int, b: int) -> float:\n",
    "    Divide a and b\n",
    "\"\"\"\n",
    "    image=state[\"input_file\"]\n",
    "    sys_msg = SystemMessage(content=f\"You are an helpful agent that can analyse some images and run some computatio without provided tools :\\n{textual_description_of_tool} \\n You have access to some otpional images. Currently the loaded images is : {image}\")\n",
    "\n",
    "\n",
    "    return {\"messages\": [llm_with_tools.invoke([sys_msg] + state[\"messages\"])],\"input_file\":state[\"input_file\"]}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4eb43343-9a6f-42cb-86e6-4380f928633c",
   "metadata": {},
   "source": [
    "We define a `Tools` node with our list of tools.\n",
    "\n",
    "The `Assistant` node is just our model with bound tools.\n",
    "\n",
    "We create a graph with `Assistant` and `Tools` nodes.\n",
    "\n",
    "We add `tools_condition` edge, which routes to `End` or to `Tools` based on  whether the `Assistant` calls a tool.\n",
    "\n",
    "Now, we add one new step:\n",
    "\n",
    "We connect the `Tools` node *back* to the `Assistant`, forming a loop.\n",
    "\n",
    "* After the `assistant` node executes, `tools_condition` checks if the model's output is a tool call.\n",
    "* If it is a tool call, the flow is directed to the `tools` node.\n",
    "* The `tools` node connects back to `assistant`.\n",
    "* This loop continues as long as the model decides to call tools.\n",
    "* If the model response is not a tool call, the flow is directed to END, terminating the process."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "id": "aef13cd4-05a6-4084-a620-2e7b91d9a72f",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAANYAAAD5CAIAAADUe1yaAAAAAXNSR0IArs4c6QAAIABJREFUeJztnXdcU1fj/89NQnYChD1kiQgIjooTXFXqI44fUKt11Grr86271tX66GPt0Nplfdo+1rb6WBXrnlgVrKsuXBUVEESmjEBISEJCxk1yf3/EF6UYhpp7zw0571f/sMnNOZ/Am3PvPfcMjCAIgEDAgwE7AMLZQQoiIIMUREAGKYiADFIQARmkIAIyLNgBnge1AlfL8Ua1WdtgMhkdo1uJ5YIxWRhfxOSLWR5+bC6fCTsRXcAc4xcIAABAVqkvuqstydUKxCyzieCLmQIRi81jAEf4BiwOpqk3NTaYG9UmrcoscGWGxgi69RYK3V1gR4OMYyiokuNXj9cxXTB3b3ZoD4FnAAd2ohelskhXkqNVSA1uXuzB4z1YLs57ReQACl4/JS+41TB4gmd4LyHsLPbn7h/Kq+nyISmeMYNdYWeBA90VPPifiph4cWScGHYQcrmRoWhQ4COn+MAOAgH6KkgQxE8riye84+8XyoOdhQryrqtLc7VJb/nBDkI19FXwhxWPZqwOEYgd8p79+ci/qc65qp74biDsIJRCUwUPbqqIT/bwC3GK9q8596+o5FWG4a95ww5CHXS8Ecs6KY8dInZC/wAAsfGufBHzwQ017CDUQTsF62uNj7I13ft28vuPNnhppPuFAzLYKaiDdgpeTZcPHu8BOwVMWC6MvqPcr5+Sww5CEfRSUFqq5/AYYbGdsP/vmeg/WiIt1eNGC+wgVEAvBYvuaSS+bMqqy8nJMRgMsD7eNlwBsyRHS1LhtIJeCpbkakN7CKipKz09febMmTqdDsrH2yU0RoAUpJr6WqNYwnL3oagVfO4GzNqNRV77ZyUsVqCS46RWQRNopKCqDscwjIySy8rK5syZk5CQkJSUtH79eovFkp6evmHDBgDAqFGj4uLi0tPTAQDZ2dkLFixISEhISEh45513Hjx4YP24UqmMi4vbtWvX6tWrExIS/vnPf9r8uH1huTA0SpNWZbJ7yXSDRs8eGtVmvpiUUXSffPJJaWnp0qVLtVrtrVu3GAxGfHz89OnT09LSNm3aJBQKg4KCAABVVVUGg2H27NkMBuPAgQOLFi1KT0/ncrnWQrZt2/baa69t2bKFyWT6+Pg8/XG7IxCztGqTwJVGvyMyoNHX06pNJD2Oq6qqioyMTElJAQBMnz4dACCRSAIDAwEAMTExbm5u1sPGjBmTlJRk/Xd0dPScOXOys7MHDhxofSU2Nnb+/PlNZT79cbsjcGVqVWbQhaTi6QKNFASAYHFIOREnJSX98ssvX3zxxezZsyUSSWuHYRh2/vz5tLS0kpISPp8PAJDL/+qc69+/PxnZ2oDDZRIWOj4+tS80uhbkCVgNClIufebPn79kyZLMzMwJEybs37+/tcO2bt26fPny6OjojRs3Ll68GABgsfzVM8fjUf3AUFln5DvBKA0aKcgXMxvVZjJKxjBs6tSpx44dGzZs2BdffJGdnd30VtMoDYPBsH379uTk5KVLl/bu3Ts2NrYjJZM6yIO8i2NaQSMFRRIXF3JOxNYOFIFAMGfOHABAfn5+U6smkz15GqvT6QwGQ1RUlPV/lUpli1awBS0+TgYiCUvk1vlbQRp9Q68ATuUjnUZpEtr75/7+++8LhcKBAwdevnwZAGD1rFevXkwm86uvvpowYYLBYHj11VfDw8P37t3r4eGh0Wh++uknBoPx6NGj1sp8+uP2zVyap3VhMzAGKX+TtIK5du1a2Bn+QinDcb3FO4hr32IrKiouX758+vRpnU63cOHC4cOHAwDEYrGPj8+ZM2cuXbqkVqvHjRv30ksvXblyZf/+/WVlZQsXLgwODj506NC0adNwHN+5c2dCQkJ0dHRTmU9/3L6Z75xXBoTzvLvY+UdBQ+g1ZLU8X1ucox0+0YkGbLZG+k9VIyZ5Cd06/xRPGp2IAQBBkYLrpxTSMr1vsO2/fqVSmZycbPOtwMDAioqKp18fNmzYRx99ZO+kLZk9e7bNs3ZUVFTTU5bm9O3b9+uvv26ttJyrKqEbyxn8o10rCACofKS7flqeusD2/Amz2VxTU2PzLQyz/V14PJ67u7u9Y7ZEJpPhuI1Huq2l4nA4Hh6tDov8aWXxm2uCObzOfztMRwUBAOf313brIwzsxocdBA73r6iMekvfkaT/2dAEGnXKNDFikvfpHVKdhpQ+QppTXtBYfE/jPP7RVEEAwJQVQb9+Xg47BdU01ONn0mr+39wA2EEohY4nYisGnXn3hvJpHwQ5ySVRTZk+M61m2soghhP0BTaHvgpaW4U9Xzye8I6fb2ef0FlwW333D9Wk9zr7qBhb0FpBK2f31Oi05vjxnpQNqKaSisLGK+nywHBe/ARP2Fng4AAKAgBKcrRX0uvCYgU+QdzQGEEnOFXpteaSXG11iV5Vh8eP97D7AyEHwjEUtFJ4p6HwjqYkRxs1QMxiYwIxS+DK5HCZDvEFmExMqzY1qk0alUmtMNWU6UN7CCL6ioK6O2nfUxOOpGATpQ+0qlpcqzZpVWaTyWKxa+8NjuN5eXm9evWyZ6EA8IRMwkLwxSyhK8vDj+3ftZNf3XYch1SQVORy+ZQpUzIzM2EHcRZo2i+IcB6QggjIIAVbgmFYREQE7BROBFKwJQRBPHz4EHYKJwIp2BIMw1xdnXTxeyggBVtCEIRKpYKdwolACtrA19cXdgQnAiloA6lUCjuCE4EUbAmGYc1nyiHIBinYEoIg8vLyYKdwIpCCCMggBVuCYVgbq28h7A5SsCUEQSgUCtgpnAikoA08PZ10ADMUkII2qKurgx3BiUAKIiCDFGwJhmFdu3aFncKJQAq2hCCIoqIi2CmcCKQgAjJIQRs0LfeLoACkoA1srgiIIAmkIAIySMGWoJEyFIMUbAkaKUMxSEEEZJCCLUGTOCkGKdgSNImTYpCCCMggBVuC5hFTDFKwJWgeMcUgBVuCRspQDFKwJWikDMUgBRGQQQrawMfHB3YEJwIpaIPWdlpEkAFS0AZovCCVIAVtgMYLUglSsCVosBbFIAVbggZrUQxS0AaBgbb3hEeQAdr65glvv/22VCplMpkWi6W+vl4ikWAYZjKZTp48CTtaJwe1gk+YNGlSQ0NDVVWVVCo1GAzV1dVVVVUY5vD7LdIfpOATRo8eHRYW1vwVgiD69u0LL5GzgBT8iylTpvD5f+2L6evrO3XqVKiJnAKk4F+MHj06ODjY+m9rExgZGQk7VOcHKfg3ZsyYIRAIrE3glClTYMdxCpCCfyMxMTE4OJggiD59+qDHdNTAgh3ABhYLoZTh6jrcAqO/KPmVd0Dj0X8MfbM4R0t97UwmcPdmiz1cqK8aFrTrF8y/pc69qm7UmP3D+FqVCXYcqhG6s8rzte5e7H6j3f3DnGLndnop+OC6uvCudthrvgyGU3fI6XXmzB2ViVO9vbtwYWchHRpdCxZmawr+1IyY7Ofk/gEAuDzmhDlBp36RKmVG2FlIh0YK3rukjE9Gw5X/YtB471uZ9bBTkA5dFNRpzYpqI5fPhB2ERrh6sssLGmGnIB26KNigwH2CnOLqu+PwRSwun2kyWmAHIRe6KAgApm1wuvvfdlHJ8U4/VII+CiKcFKQgAjJIQQRkkIIIyCAFEZBBCiIggxREQAYpiIAMUhABGaQgAjJIQQRknFrBk6eOJaeOqqmRtnaA2Wy+fz/7xSuSSqurpVUvXk6nxKkVZLM5AoGQwWj1h/Dl159s3LT+BWuprKqYOn1CQQFaKsk2dJy+RBmjRv5j1Mh/tHGA0WB48VrMJhOtZkfQDQdW8P797F1pW+/nZAMAIrv3mDNncfeIKACAXq/f9O2Gq1f/AAD07Nlnwbxlvr5+WVmXf9r6XVVVha+v/4TxE1NTJm/4Ym1GxgkAwJmMLBaLZfOA8xfOAABGjIwDAPy6+7ifr/+p08ePHt1fXPKIx+P37zdowfxlbm7uAICDh349dz7ztYnTtm37r1xR161b5LIlq4OCQqqlVW/OmggA+OjjDz4CYPTocR+sWAv7J0cvHFhBqbTKYDS8MX02g8E4duzABysX7dmdzuVyf92zPSPjxKyZczw8PDMyT/B4vMbGxrUfvx8SHLZ0yeqSkkdyuQwAkJryusViOXPmJADA5gHTp74lq62prq5c+cHHAAAPiScAIC/vflBQSGJiUn294vCRvdpG7WfrNlnzPHiQs3//rqVLV5tMpo0b1332+Yc//HeHh8Rz1b8+Xbd+9ayZc/r0jnN3l8D+sdEOB1Zw1KgxiYlJ1n937x69ZOmc+znZ/eIGVkureDze1CkzWSzW2KRk69WYwWAYMuTlxFFjmj4e0S0yJPjJOkb1SsXTBwQGBrm6uinq5bGxvZteXPLev5rGkLJYrLTd/zMYDBwOx/rKuk+/kUg8AACpqa9v/uEblVrlKnaN6BYJAAgKCmleDqIJB1YQw7BLl8/vP5BWVlZiXY6oXiEHAIwaOebs2dPvf7Bw/rylYWHhAAB/v4AePXqm7d7G5fLGj0tls9ktimr3gCZwHD98ZO+Z30/W1ko5HK7FYlEq6318fK3vcrlP5h74+PgBAOR1Mlcx2s6uHRz4jnjnrq1rPlzePSJ63Scb57yzGABgISwAgAH9B3+2/j+Kevnb/3z9q68/NZlMGIZtWP/t6FfGbflx04yZqXfv/tmiqHYPsEIQxL9WLd796//G/GPC5xu+TxyV1FRpC1xYLgAAs8VMzlfvVDiqgjiO/7pn+9ik5AXzl8bG9o6Oim3+7oD+g7f9vHfe3Pd+O3l0z94dAAChULj43Q92/HJIIBCu/veSxsaWM9NaO6D5zezdu3/e/vPGu4s+mPjq1OiomLDQcEq+ayfHURU0Go0GgyEi4snKQyq1EgBgsVisbwEAGAzGaxOneXp6FRbmAwAMBoP1hJua8rpGq5E+1VFs8wAul6dQyK3FNtVivbZrUWkbcDhc60mZhB9DZ8BRrwUFAkFYWPjhI3slEg+tRrNj508MBqO4+BEA4PCRvVeuXkwclSSXy+rqZN27R+M4/uasV4cPSwwN6Xrs2AGhQOjv/7cFzVs7oFfPl06dPr7xm/WxMb1FInF0VCybzf556/djx6YUFxf+umc7AKCk+FGAf1vLo3t7+/j7Bew/mMbl8dRq1eRJb7TRGe6EOPDP4t+r1vO4vI8/WbnvwK65c997Y/rbGRnpOI77+wfiRuMPW7757eTR1NTXJ096Q6fX9end7/ezpzZ9u4Hl4rJ+3SYu929rtbR2QGJiUkrypAsXz/y09bvcvHteXt6rV60rfJS/9qMVt29f3/j1jwMHJhw+srftnBiGrV69ns8XfP/fr05npFsbaUQTdFnWqPax4eze2nH/1wV2EHqR9mnR/60PY7p05qnEDtwKIjoHSEEEZJCCCMggBRGQQQoiIIMUREAGKYiADFIQARmkIAIySEEEZJCCCMggBRGQQQoiIEMXBRlMTCxx1MGL5OEVyGEwO/MwGRop6OnPLsnV0mTkGE1QSA24wYLR5VdEFjT6fpH9RNUlOtgpaERNua5bHyHsFKRDIwVHTPK+fLhGp0Ub4AAAQGluQ2lOQ1xi55/6TpdR01YMOvOudeW9R0iEbi5u3mxAo2gUQQCgqNY3yPHyfM1r7wV2+q2XaKeglVu/KyoKdQSBqVrZCtVsNuM43mL+h70gCEKv1/N4FG2Ip9PpOBxO04QmzwAOACA4kheb4EZNAPgQDsjChQvJK3zTpk0JCQnHjx8nr4rm1NbWrlmzhpq66AkdW8E2OHfu3Msvv0xe+dXV1QsXLiwtLY2Kitq1axd5FT3Nzp07R44cGRAQQGWldIBGtyPtMnnyZLJ/QwcOHCgtLQUAlJeXnzhxgtS6WpCUlDR37lyDPVY0dCwcoxWUSqWurq6VlZXh4SSuoVFZWblo0aKysjLr/1LfEFovDe/duxcdHS0SiSiuGhYO0AoeOHAgKyuLx+OR6h8A4MiRI03+AQDKysqOHTtGao1Pw+PxunXrNn78eI1GQ3HVsHAABcvKypKTk8mupaqq6vz5881f0Wq1u3fvJrvep5FIJBcuXNDr9VJpq+uwdyZoreDVq1cBAMuWLaOgrr1791qbwKZlijAMe/z4MQVV28TT01MoFMbHxzdvmDsnsG/JbWM0GgcPHlxfX0991TKZ7JVXXqG+XpvodLrt27fDTkEudGwFlUplWVnZ2bNn3dwgdM+azebIyEjq67UJl8udOXMmAGDVqlVmc+dcMJN2Ch4/fry0tDQ8PJykhx/tguO4tV+GVsyaNWvx4sWwU5ACvRSUyWR37tzp3RvmsuA6nc7HxwdiAJuEh4d/9913AIALFy7AzmJnaKRgaWkphmEffvgh3BhyudzFxQVuhjbAcXzFihWwU9gTuii4Zs0aHo/n6ekJOwior68PCgqCnaJVEhMTx44dCwAwmTrJqDZaKFhRUTFgwACanP5KSkro8JfQBsOGDQMA7Nu37+HDh7Cz2AH4Cup0OqFQaP3LpgMGg6Fr166wU7TPtGnTPvzww05wmwxZweXLl1+7dg1K50trnDt3LiIiAnaKDrFnzx6TyVRQUAA7yAsBU8Hbt28vWrSI1MFXz4pSqRSLxf7+/rCDdBQOh6NQKHbu3Ak7yPMDTUGFQtGtW7cuXei1vnlWVlZISAjsFM/GoEGD6uvrYad4fuAoePDgwR9//FEsFkOpvQ3++OOPoUOHwk7xzLz77rvWvYBgB3keICgolUrd3NxWrlxJfdXtolKpHFFBAACbzd68eXNaWhrsIM+MYwxZpYaMjIyLFy+uX78edpDn5/r1656eng5xR98E1a3gggULcnJyKK60gxw5ciQlJQV2ihdiwIABwcHB7W6LRysoVfDixYvjx4+PiYmhstIOUlJSwmKx+vXrBzvIi8JisRITE5VKJewgHQWdiJ+wbNmysWPHjhgxAnYQO6BSqU6cODFt2jTYQToEda3gvn37aHsKzs/Pr66u7hz+AQBcXV0dxT/qFCwtLd2/fz89T8EAgG+++Yaa6QFUsnz58rt378JO0T4UKYhh2NatW6mp61k5evRoYGBgnz59YAexM8uXL//2229hp2gfZ78WNJlMo0ePPnv2LOwgzgsVreC5c+c+/vhjCip6DpYsWULbbHYhMzMTdoR2oELBrKysQYMGUVDRs7Jr166wsLD4+HjYQUjk4cOH27dvh52iLZz3RFxYWPjdd985xNXSi2AymdLT0+nc5U6Fgkajkc1mk13Ls9K/f/9r164xmUzYQZwd0k/Eubm5s2fPJruWZ2X69Ok7duxwEv9ycnI2b94MO0WrkK6gRqMhezmiZ+X777+fNm1aVFQU7CAUERMTs3v3br1eDzuIbZzuWnDr1q04js+dOxd2EEqpqKgQCATu7u6wg9iA9FbQZDIZjbaXjKae48ePV1ZWOpt/AIDAwEB6+keFgufOnYM+O93KzZs3c3NzaRKGYmpra+fNmwc7hW1I33PLw8ODDsPX7t27t3nzZpr3kJGHt7d3QUGBUqmk1WRFK05xLVhUVLRy5cr9+/fDDgITi8WCYRgNNzLp/P2CFRUVixYtOnz4MKwAiLah4gFdSkoKrDVrCwsL582bh/yz3or98MMPsFPYgIr9V4cPH/7mm2+azWa1Wu3t7U3ZZgr5+fl79+49fvw4NdXRHJFIVFRUBDuFDUhUcOjQoY2Njda1hK2XIARBREdHk1djc4qKilatWnXo0CFqqqM/Q4YM6dWrF+wUNiDxRPzyyy9bt1ZrugTmcDgDBgwgr8YmcnJyfv75Z+Rfc1gslkRCx309SVRw7dq10dHRzW93vLy8KPhDzM7O/vLLLzds2EB2RY6FTCYbN24c7BQ2IPd25PPPP29aooUgCD6fT/bz4kuXLp04cWLHjh2k1uKIsNls63UR3SBXQR8fn/fee8+6YiSGYWQ3gRkZGYcOHVq9ejWptTgoYrGYntN3SO+USUhISE1NFQgEQqGQ1AvBo0ePXrx4cdOmTeRV4dBgGBYWFgY7hQ06dEdswi06zfM/ZJvy2ltlRbVFRUVhQT0a6klZIfn8+fO594sdejkYssFxfOLEidTvqtcu7TwdeXBDfe+SSiE18oQvNLqzqV+GJIxGo3eAsKqoMaynsF+iu4c/h7y6HIvly5efPXu2qVPM2hwSBPHnn3/CjvaEtlrBG5mKuip8SKqvSELfTRCaYzETSpnx5C/SUVN9/ELg7JxDN+bOnZuXl1dTU9O8d4xWy3i2ei14/bRCJTMNSfFxFP8AAAwmJvHlJM8PPruntqacpoOEKSYsLKxv377Nz3UYhtFqDUXbCtbXGusqDQPHeVOexz68PMXvVqYDr31rX2bMmNF8Q43AwMDXX38daqK/YVvBukoDQdBuVE/HEbm7PC5sNBrgj1OkA+Hh4f3797f+myCIIUOG0GSLFyu2FdSozF5dHPtaKjhaoKh2yLWXyeCNN97w9vYGAAQEBNBt0S3bCuIGC6537CZELTcB4MANuX3p2rXrgAEDCIIYNmwYrZpAigZrIZ4Vi4Uoz2/U1Ju0apMJJ3RaO2yx1Mt/ur5Pt+6S+N/31Lx4aVwek81j8MVMsbtLUCT/RYpCCtKLBzfUBbc1FYWN/hFik5FgujAZLiyA2aNTgsHtP2gsbgG4PR4UN2gIM24ym3AXF8PxH6uCowURfYTd40TPURRSkC7kXVdfPlbnFSRiCUQxifQ6V7aNe7CkobYx97b+Srp8SLJHtz7PJiJSED46jfnk9hrczAgbEMhiO94aIxiGiX0EAAiEXuJb5xQPbmrGvu3LZHb0Qhz+TpxOTnmBdue6MmGAxLe7lyP61xw2j+UX7c12d9uyoqj2cUcfDSAFYVLzWH/xsKL70GAOz2EeQbULV8juMSr05PYatbxDq2ggBaFRkqvJTJN16e0wu34+EyH9Ag9vlkrL2m8LkYJw0ChNZ/d0Wv+shMQFHP6u0oS308GMFITD6Z01If0DYKcgna4D/X/7XzvdkEhBCNw6U28GbJaLY998dASOgK3VYrnXVG0cgxSEQNZJuXc4TZdaszveYZIr6Yo2DrCngnkPcl5wV+YLF38fMTKuvLzUfqFox+3fFQHREhouLwQA+PiLcQeP2XnyK4vD9AgS5VxttSG0m4KnM9LnL5ip1+vsVWBn5cFNDdfVsUchPSscITf/lqa1d+2moIPuSk8xagWu11p4Iuea2iL04Mke6/FWhm/a5wHd6Yz0Tf/ZAABITh0FAHh/xYf/GD0eAJCZ+dvuPdurqio8PDzHJqVMmzrLusSHyWTa/suWjMwTKpUyODh05pvvJMQPf7rYrKzLP239rqqqwtfXf8L4iakpk+2SFiKPCxrdA4UkFf6o+PbJM5urpA9FQkl4aNyYxLlikScAYPW6ka+Ofz/nwYW8gis8rnBgv5RXRjzZA8FsNv9+YVvWraNGo65rWF8cJ2u2g2eIqOxBY3hvG9/dPq3ggP7xk16bDgD4bN2mbzdtHdA/HgCQkXHis88/7NYt8t+r1w8flvi/7T/s/vXJIqdfff3pvv27xo1NWfWvT319/f+9Ztm9e3dalNnY2Lj24/fZLuylS1YPHjRULpfZJSpc6qpxgiDlFrCw6ObPOxf5eIdOSl41dPDU4tI7W7bPNxqfKLX38Ef+vhHz3t7yUq8xmed+ziu4Yn39yIkvz1zYFhkxOGXcMrYLV6dvICMbAMBsxuplth+W2KcVdHeX+PsHAgCiomJcXd2sA8S3/u+/sbG9V//rUwDA0CEvNzSo9+7b8WrqlLq62ozMEzPemD3zzXcAAMOGjpw+I+WXHT9u/HpL8zLrlQqDwTBkyMuJo8bYJSQd0KpMLA6PjJKP/vb1wLiUlHFPtrSNCB/w5beTCx5lxUYPBwD0f2nCyGEzAQD+vhE3bh97+Cgrunt8RVV+1q0jI4fNGjNqDgAgrs/YohKyZna6cFiaVqaQkzVSpqKivK5ONnnSG02v9Os36OSpYxWV5QUFeQCAhIQn+09jGNYvbuCZ30+2KMHfL6BHj55pu7dxubzx41JpuH/Tc6DTmDnu9u8OVNRX18hK6hSPs24dbf66UvWkW5jNfuI9k8l0FXur1DIAwP28CwCAoYOnNB2PYWR10rE4jEY1tQpqtBoAgJvbX6uJiURiAECdrFar1QAA3Ju9JRa7NjY2arXa5iVgGLZh/bdbt32/5cdNBw6mrXz/4169XiIpLWWQtKpyg0YOAEgcMbtn9N82lheJPJ8+mMFgWSxmAIBSKeVyhQK+KymZWkBglla+u52tb5qv6u3lAwBQqZRNb9XXK6wienp6AwDU6r86ihQKOYvF4nJbdlUIhcLF736w45dDAoFw9b+X0HNhqGdC4Mo0GewwCr8FPK4IAIDjBm+vkOb/8bht3foIBO56vQY3UbErjMlgErnbbu/spiCPywMA1NU9uWnw8PD09fG7ceNK0wEXL/7O5XLDw7tHRcVgGJZ1/bL1daPRmHX9co8ePZlMJtuF3dxOa0ePv19AasrrGq1GKq2yV1pYiFxZJqP9FfTyDHJz9b35Z7rB+KRf1mw2mUx4258KDIgEANy5l2H3PE9jMppFbrYVZK5du/bpVyuLdGYT8A15hgtnLo9/7PiB0rJiDGB5D+537x4tEor3HUiTyWpwHD98ZO/vZ09Nm/pWv7iBYpFYKq0+cnQfAFhdneyHH74pKS1avmyNn18Ay8XlyNF9+QW5QUEhnh5eM2am1tXJ5PK6I0f3GQ2Gt9+ax2J19Mqh8I46JIovbOVrw0KjwuVSE8/NznckGIa5u/nduH08L/8SAYiyx/ePnPjabDYGd4kFAJy7tDPQP7J7+JNlzbJuHuVyBX16vuLtGXov9+ztOyd1eo1GW3/t5pGikluB/lHRkQn2jQcA0Ku0odFciY+NC3q7KSgWib28fC5cOHPt2qWGBvXo0ePCwyPc3SXnzmeeOn1cWa+YOnXW9GlvWR9M9YsbpNU8IWSvAAADj0lEQVRqTp0+du5choAvWLZ0db9+gwAAIqHIz9f/zzs3GRgjKjq2oqL88pXzly6f8/Dw+mDF2oCAwI7noaeCfDHrxm91HsH2v/zy8QoJDIguLs2+nX2yvCLXzy+8b+8x1n7B1hRkMBhREQmyurJ7uWeLS7N9vcMU9VU+XqFkKFhyu2bUNB8Gw8ZjSdsra93IUBj1oNdwOi5N3EFObqsYlurpS7/FjX794rFbkAff1YkekDTUNZrUDSnzbQ+OpFcj4QxEDxQ+ytW1oeDDRzd27lv59Os8rqi1ruNxoxcOjEu2V8IHBVd2H1zz9OsEQQBA2Oy4mTPrv4H+ka0VaNAYevQXtPYuUpBqeg91v3aiyD1QzGTZvhcMCeq5ZN6up18nCNDa8Bo+z55n9q6hfW0GsFgsBEHY3EdcLPJqrTSjDldLNVH9Wl1ODikIgfjxHnm3Fb7dbXTaAQDYbK6EDXNAv30D1BXXD0n2aOMANGQVAj2HuPG4ZoOunU6TToC+weDmgbU9uR0pCIcxs3yLsyphpyAXi4UovlGVNMu37cOQgnBgcxjJc/1LbnRmC4uzKqasCGr3MKQgNPxCeakLfEtuVMAOYn/MJkvhlfKp7we6e7c/uAQpCBNXD/b42b45mSU6dedZGVtbry+8XD55SSBf2KGbXaQgZDwDOPM3drVo1JU5NQYtFSMGyEOnNjy+W+1i0cz5vKu4w6vko04Z+GAYNvZtv5Ic7R9HavluXBafI/biMx1nlrHJYFbLtGaDEdcahqd6dol4thUvkYJ0ITRGEBojKLqvKbyjfXRFIQnk4wYLk81icVg0XLGYIAizwWTGTS5sRr1UFxoj6BYvDIl+nmURkYL0omussGusEABQXaLTqsxalclosOjtsdCvfeHwGVw+my/mi9yZPkHtdLu0DVKQpviFkjLFhIbYVpDNxSz0a/yfCVcvF9ImQiDsie3fksjdRVbm2OsilNzTePh1hhlPnR7bCnp34dByzZOOopQZQ3rwWS6oGXQAWm0FA8K5fxySUp7HPpzdXTUwqa3RGQj60NZ+xLnXVIXZml7DPNx92K0NbqMVOo1JVYf/cVD66sIAtw48GkLQgXa2xC7J1WZfVEpL9EwW3U/MEj+OSmYMi+H3H+MhEKM7fYehHQWbMOjoviUdQQAu3wGaakQLOqogAkESqNlAQAYpiIAMUhABGaQgAjJIQQRkkIIIyPx/ohlWIXXfCHUAAAAASUVORK5CYII=",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from langgraph.graph import START, StateGraph\n",
    "from langgraph.prebuilt import tools_condition\n",
    "from langgraph.prebuilt import ToolNode\n",
    "from IPython.display import Image, display\n",
    "\n",
    "# Graph\n",
    "builder = StateGraph(AgentState)\n",
    "\n",
    "# Define nodes: these do the work\n",
    "builder.add_node(\"assistant\", assistant)\n",
    "builder.add_node(\"tools\", ToolNode(tools))\n",
    "\n",
    "# Define edges: these determine how the control flow moves\n",
    "builder.add_edge(START, \"assistant\")\n",
    "builder.add_conditional_edges(\n",
    "    \"assistant\",\n",
    "    # If the latest message (result) from assistant is a tool call -> tools_condition routes to tools\n",
    "    # If the latest message (result) from assistant is a not a tool call -> tools_condition routes to END\n",
    "    tools_condition,\n",
    ")\n",
    "builder.add_edge(\"tools\", \"assistant\")\n",
    "react_graph = builder.compile()\n",
    "\n",
    "# Show\n",
    "display(Image(react_graph.get_graph(xray=True).draw_mermaid_png()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "id": "75602459-d8ca-47b4-9518-3f38343ebfe4",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "messages = [HumanMessage(content=\"Divide 6790 by 5\")]\n",
    "\n",
    "messages = react_graph.invoke({\"messages\": messages,\"input_file\":None})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "id": "b517142d-c40c-48bf-a5b8-c8409427aa79",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "================================\u001b[1m Human Message \u001b[0m=================================\n",
      "\n",
      "Divide 6790 by 5\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Tool Calls:\n",
      "  divide (call_s0G5ewtIQyHUCOv0fClsCpgh)\n",
      " Call ID: call_s0G5ewtIQyHUCOv0fClsCpgh\n",
      "  Args:\n",
      "    a: 6790\n",
      "    b: 5\n",
      "=================================\u001b[1m Tool Message \u001b[0m=================================\n",
      "Name: divide\n",
      "\n",
      "1358.0\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "\n",
      "The result of dividing 6790 by 5 is 1358.0.\n"
     ]
    }
   ],
   "source": [
    "for m in messages['messages']:\n",
    "    m.pretty_print()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08386393-c270-43a5-bde2-2b4075238971",
   "metadata": {},
   "source": [
    "## Training program\n",
    "MR Wayne left a note with his training program for the week. I came up with a recipe for dinner leaft in a note.\n",
    "\n",
    "you can find the document [HERE](https://huggingface.co/datasets/agents-course/course-images/blob/main/en/unit2/LangGraph/Batman_training_and_meals.png), so download it and upload it in the local folder.\n",
    "\n",
    "![Training](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/LangGraph/Batman_training_and_meals.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "id": "f6e97e84-3b05-4aaf-a38f-1de9b73cd37f",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "messages = [HumanMessage(content=\"According the note provided by MR wayne in the provided images. What's the list of items I should buy for the dinner menu ?\")]\n",
    "\n",
    "messages = react_graph.invoke({\"messages\": messages,\"input_file\":\"Batman_training_and_meals.png\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "id": "17686d52-c7ba-407b-a13f-f6c37668e5b0",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "================================\u001b[1m Human Message \u001b[0m=================================\n",
      "\n",
      "According the note provided by MR wayne in the provided images. What's the list of tiems I should buy for the dinner menu ?\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Tool Calls:\n",
      "  extract_text (call_JalVBOR82hwRknFcplnLoTtG)\n",
      " Call ID: call_JalVBOR82hwRknFcplnLoTtG\n",
      "  Args:\n",
      "    img_path: Batman_training_and_meals.png\n",
      "=================================\u001b[1m Tool Message \u001b[0m=================================\n",
      "Name: extract_text\n",
      "\n",
      "TRAINING SCHEDULE\n",
      "For the week of 2/20-2/26\n",
      "\n",
      "SUNDAY 2/20\n",
      "MORNING\n",
      "30 minute jog\n",
      "30 minute meditation\n",
      "\n",
      "EVENING\n",
      "clean and jerk lifts—3 reps/8 sets. 262 lbs.\n",
      "5 sets metabolic conditioning:\n",
      "10 mile run\n",
      "12 kettlebell swings\n",
      "12 pull-ups\n",
      "30 minutes flexibility\n",
      "30 minutes sparring\n",
      "\n",
      "MONDAY 2/21\n",
      "MORNING\n",
      "30 minute jog\n",
      "30 minutes traditional kata (focus on Japanese forms)\n",
      "\n",
      "EVENING\n",
      "5 sets 20 foot rope climb\n",
      "30 minutes gymnastics (work on muscle ups in\n",
      "particular)\n",
      "high bar jumps—12 reps/8 sets\n",
      "crunches—50 reps/5 sets\n",
      "30 minutes heavy bag\n",
      "30 minutes flexibility\n",
      "20 minutes target practice\n",
      "\n",
      "TUESDAY 2/22\n",
      "MORNING\n",
      "30 minute jog\n",
      "30 minutes yoga\n",
      "\n",
      "EVENING\n",
      "off day\n",
      "leg heavy dead lift—5 reps/7 sets. 600 lbs.\n",
      "clean and jerk lift—3 reps/10 sets\n",
      "30 minutes sparring\n",
      "\n",
      "WEDNESDAY 2/23\n",
      "OFF DAY\n",
      "\n",
      "MORNING\n",
      "20-mile run—last week’s time was 4:50 per mile.\n",
      "Need to better that time by a half a minute.\n",
      "\n",
      "EVENING\n",
      "skill training only\n",
      "30 minutes yoga\n",
      "30 minutes meditation\n",
      "30 minutes body basics\n",
      "30 minutes bow basics\n",
      "30 minutes sword basics\n",
      "30 minutes observational\n",
      "exercise\n",
      "30 minutes kata\n",
      "30 minutes pressure points\n",
      "30 minutes modus and pressure points\n",
      "\n",
      "THURSDAY 2/24\n",
      "MORNING\n",
      "30 minute jog\n",
      "30 minute meditation\n",
      "30 minutes traditional kata\n",
      "(focus on Japanese forms)\n",
      "\n",
      "EVENING\n",
      "squats—10 reps/5 sets. 525 lbs.\n",
      "30 minutes flexibility\n",
      "crunches—50 reps/5 sets\n",
      "20 minutes target practice\n",
      "30 minutes heavy bag\n",
      "\n",
      "FRIDAY 2/25\n",
      "MORNING\n",
      "30 minute jog\n",
      "30 minute meditation\n",
      "\n",
      "EVENING\n",
      "clean and jerk lifts—3 reps/8 sets. 262 lbs.\n",
      "5 sets metabolic conditioning:\n",
      "10 mile run\n",
      "12 kettlebell swings\n",
      "12 pull-ups\n",
      "30 minutes flexibility\n",
      "30 minutes sparring\n",
      "\n",
      "SATURDAY 2/26)\n",
      "MORNING\n",
      "30 minute jog\n",
      "30 minutes yoga\n",
      "\n",
      "EVENING\n",
      "crunches—50 reps/5 sets\n",
      "squats—(5 reps/10 sets. 525 lbs.\n",
      "push-ups—60 reps/sets\n",
      "30 minutes monkey bars\n",
      "30 minute pommel horse\n",
      "30 minutes heavy bag\n",
      "2 mile swim\n",
      "\n",
      "In an effort to inspire the all- important Dark Knight to take time out of his busy schedule and actually consume a reasonable amount of sustenance, I have taken the liberty of composing a menu for today's scheduled natal to its my hope that these elegantly prepared courses will not share the fate of their predecessors -mated cold and untouched on a computer console.\n",
      "-A\n",
      "\n",
      "W A Y N E M A N O R\n",
      "\n",
      "Tuesday's Menu\n",
      "\n",
      "Breakfast\n",
      "six poached eggs laid over artichoke bottoms with a sage pesto sauce\n",
      "thinly sliced baked ham\n",
      "mixed organic fresh fruit bowl\n",
      "freshly squeezed orange juice\n",
      "organic, grass-fed milk\n",
      "4 grams branched-chain amino acid\n",
      "2 grams fish oil\n",
      "\n",
      "Lunch\n",
      "local salmon with a ginger glaze\n",
      "organic asparagus with lemon garlic dusting\n",
      "Asian yam soup with diced onions\n",
      "2 grams fish oil\n",
      "\n",
      "Dinner\n",
      "grass-fed local sirloin steak\n",
      "bed of organic spinach and piquillo peppers\n",
      "oven-baked golden herb potato\n",
      "2 grams fish oil\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "\n",
      "For the dinner menu, you should buy the following items:\n",
      "\n",
      "1. Grass-fed local sirloin steak\n",
      "2. Organic spinach\n",
      "3. Piquillo peppers\n",
      "4. Potatoes (for oven-baked golden herb potato)\n",
      "5. Fish oil (2 grams)\n",
      "\n",
      "Ensure the steak is grass-fed and the spinach and peppers are organic for the best quality meal.\n"
     ]
    }
   ],
   "source": [
    "for m in messages['messages']:\n",
    "    m.pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b96c8456-4093-4cd6-bc5a-f611967ab709",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}