File size: 10,510 Bytes
680f625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"source": [
"# Agents in LlamaIndex\n",
"\n",
"This notebook is part of the [Hugging Face Agents Course](https://www.hf.co/learn/agents-course), a free Course from beginner to expert, where you learn to build Agents.\n",
"\n",
"\n",
"\n",
"## Let's install the dependencies\n",
"\n",
"We will install the dependencies for this unit."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"!pip install llama-index datasets llama-index-callbacks-arize-phoenix llama-index-vector-stores-chroma llama-index-llms-huggingface-api -U -q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And, let's log in to Hugging Face to use serverless Inference APIs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import login\n",
"\n",
"login()"
]
},
{
"cell_type": "markdown",
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"source": [
"## Initialising agents\n",
"\n",
"Let's start by initialising an agent. We will use the basic `AgentWorkflow` class to create an agent."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
"from llama_index.core.agent.workflow import AgentWorkflow, ToolCallResult, AgentStream\n",
"\n",
"\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Add two numbers\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"def subtract(a: int, b: int) -> int:\n",
" \"\"\"Subtract two numbers\"\"\"\n",
" return a - b\n",
"\n",
"\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiply two numbers\"\"\"\n",
" return a * b\n",
"\n",
"\n",
"def divide(a: int, b: int) -> int:\n",
" \"\"\"Divide two numbers\"\"\"\n",
" return a / b\n",
"\n",
"\n",
"llm = HuggingFaceInferenceAPI(model_name=\"Qwen/Qwen2.5-Coder-32B-Instruct\")\n",
"\n",
"agent = AgentWorkflow.from_tools_or_functions(\n",
" tools_or_functions=[subtract, multiply, divide, add],\n",
" llm=llm,\n",
" system_prompt=\"You are a math agent that can add, subtract, multiply, and divide numbers using provided tools.\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we can run the agent and get the response and reasoning behind the tool calls."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"handler = agent.run(\"What is (2 + 2) * 2?\")\n",
"async for ev in handler.stream_events():\n",
" if isinstance(ev, ToolCallResult):\n",
" print(\"\")\n",
" print(\"Called tool: \", ev.tool_name, ev.tool_kwargs, \"=>\", ev.tool_output)\n",
" elif isinstance(ev, AgentStream): # showing the thought process\n",
" print(ev.delta, end=\"\", flush=True)\n",
"\n",
"resp = await handler\n",
"resp"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In a similar fashion, we can pass state and context to the agent.\n"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AgentOutput(response=ChatMessage(role=<MessageRole.ASSISTANT: 'assistant'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='Your name is Bob.')]), tool_calls=[], raw={'id': 'chatcmpl-B5sDHfGpSwsVyzvMVH8EWokYwdIKT', 'choices': [{'delta': {'content': None, 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None}, 'finish_reason': 'stop', 'index': 0, 'logprobs': None}], 'created': 1740739735, 'model': 'gpt-4o-2024-08-06', 'object': 'chat.completion.chunk', 'service_tier': 'default', 'system_fingerprint': 'fp_eb9dce56a8', 'usage': None}, current_agent_name='Agent')"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from llama_index.core.workflow import Context\n",
"\n",
"ctx = Context(agent)\n",
"\n",
"response = await agent.run(\"My name is Bob.\", ctx=ctx)\n",
"response = await agent.run(\"What was my name again?\", ctx=ctx)\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating RAG Agents with QueryEngineTools\n",
"\n",
"Let's now re-use the `QueryEngine` we defined in the [previous unit on tools](/tools.ipynb) and convert it into a `QueryEngineTool`. We will pass it to the `AgentWorkflow` class to create a RAG agent."
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"import chromadb\n",
"\n",
"from llama_index.core import VectorStoreIndex\n",
"from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
"from llama_index.embeddings.huggingface_api import HuggingFaceInferenceAPIEmbedding\n",
"from llama_index.core.tools import QueryEngineTool\n",
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"\n",
"# Create a vector store\n",
"db = chromadb.PersistentClient(path=\"./alfred_chroma_db\")\n",
"chroma_collection = db.get_or_create_collection(\"alfred\")\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
"\n",
"# Create a query engine\n",
"embed_model = HuggingFaceInferenceAPIEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
"llm = HuggingFaceInferenceAPI(model_name=\"Qwen/Qwen2.5-Coder-32B-Instruct\")\n",
"index = VectorStoreIndex.from_vector_store(\n",
" vector_store=vector_store, embed_model=embed_model\n",
")\n",
"query_engine = index.as_query_engine(llm=llm)\n",
"query_engine_tool = QueryEngineTool.from_defaults(\n",
" query_engine=query_engine,\n",
" name=\"personas\",\n",
" description=\"descriptions for various types of personas\",\n",
" return_direct=False,\n",
")\n",
"\n",
"# Create a RAG agent\n",
"query_engine_agent = AgentWorkflow.from_tools_or_functions(\n",
" tools_or_functions=[query_engine_tool],\n",
" llm=llm,\n",
" system_prompt=\"You are a helpful assistant that has access to a database containing persona descriptions. \",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And, we can once more get the response and reasoning behind the tool calls."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"handler = query_engine_agent.run(\n",
" \"Search the database for 'science fiction' and return some persona descriptions.\"\n",
")\n",
"async for ev in handler.stream_events():\n",
" if isinstance(ev, ToolCallResult):\n",
" print(\"\")\n",
" print(\"Called tool: \", ev.tool_name, ev.tool_kwargs, \"=>\", ev.tool_output)\n",
" elif isinstance(ev, AgentStream): # showing the thought process\n",
" print(ev.delta, end=\"\", flush=True)\n",
"\n",
"resp = await handler\n",
"resp"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating multi-agent systems\n",
"\n",
"We can also create multi-agent systems by passing multiple agents to the `AgentWorkflow` class."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.agent.workflow import (\n",
" AgentWorkflow,\n",
" ReActAgent,\n",
")\n",
"\n",
"\n",
"# Define some tools\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Add two numbers.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"def subtract(a: int, b: int) -> int:\n",
" \"\"\"Subtract two numbers.\"\"\"\n",
" return a - b\n",
"\n",
"\n",
"# Create agent configs\n",
"# NOTE: we can use FunctionAgent or ReActAgent here.\n",
"# FunctionAgent works for LLMs with a function calling API.\n",
"# ReActAgent works for any LLM.\n",
"calculator_agent = ReActAgent(\n",
" name=\"calculator\",\n",
" description=\"Performs basic arithmetic operations\",\n",
" system_prompt=\"You are a calculator assistant. Use your tools for any math operation.\",\n",
" tools=[add, subtract],\n",
" llm=llm,\n",
")\n",
"\n",
"query_agent = ReActAgent(\n",
" name=\"info_lookup\",\n",
" description=\"Looks up information about XYZ\",\n",
" system_prompt=\"Use your tool to query a RAG system to answer information about XYZ\",\n",
" tools=[query_engine_tool],\n",
" llm=llm,\n",
")\n",
"\n",
"# Create and run the workflow\n",
"agent = AgentWorkflow(agents=[calculator_agent, query_agent], root_agent=\"calculator\")\n",
"\n",
"# Run the system\n",
"handler = agent.run(user_msg=\"Can you add 5 and 3?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async for ev in handler.stream_events():\n",
" if isinstance(ev, ToolCallResult):\n",
" print(\"\")\n",
" print(\"Called tool: \", ev.tool_name, ev.tool_kwargs, \"=>\", ev.tool_output)\n",
" elif isinstance(ev, AgentStream): # showing the thought process\n",
" print(ev.delta, end=\"\", flush=True)\n",
"\n",
"resp = await handler\n",
"resp"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|