{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Workflows in LlamaIndex\n", "\n", "\n", "This notebook is part of the [Hugging Face Agents Course](https://www.hf.co/learn/agents-course), a free Course from beginner to expert, where you learn to build Agents.\n", "\n", "![Agents course share](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png)\n", "\n", "## Let's install the dependencies\n", "\n", "We will install the dependencies for this unit." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "!pip install llama-index datasets llama-index-callbacks-arize-phoenix llama-index-vector-stores-chroma llama-index-utils-workflow llama-index-llms-huggingface-api pyvis -U -q" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And, let's log in to Hugging Face to use serverless Inference APIs." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from huggingface_hub import login\n", "\n", "login()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Basic Workflow Creation\n", "\n", "We can start by creating a simple workflow. We use the `StartEvent` and `StopEvent` classes to define the start and stop of the workflow." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Hello, world!'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from llama_index.core.workflow import StartEvent, StopEvent, Workflow, step\n", "\n", "\n", "class MyWorkflow(Workflow):\n", " @step\n", " async def my_step(self, ev: StartEvent) -> StopEvent:\n", " # do something here\n", " return StopEvent(result=\"Hello, world!\")\n", "\n", "\n", "w = MyWorkflow(timeout=10, verbose=False)\n", "result = await w.run()\n", "result" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Connecting Multiple Steps\n", "\n", "We can also create multi-step workflows. Here we pass the event information between steps. Note that we can use type hinting to specify the event type and the flow of the workflow." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Finished processing: Step 1 complete'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from llama_index.core.workflow import Event\n", "\n", "\n", "class ProcessingEvent(Event):\n", " intermediate_result: str\n", "\n", "\n", "class MultiStepWorkflow(Workflow):\n", " @step\n", " async def step_one(self, ev: StartEvent) -> ProcessingEvent:\n", " # Process initial data\n", " return ProcessingEvent(intermediate_result=\"Step 1 complete\")\n", "\n", " @step\n", " async def step_two(self, ev: ProcessingEvent) -> StopEvent:\n", " # Use the intermediate result\n", " final_result = f\"Finished processing: {ev.intermediate_result}\"\n", " return StopEvent(result=final_result)\n", "\n", "\n", "w = MultiStepWorkflow(timeout=10, verbose=False)\n", "result = await w.run()\n", "result" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loops and Branches\n", "\n", "We can also use type hinting to create branches and loops. Note that we can use the `|` operator to specify that the step can return multiple types." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Good thing happened\n" ] }, { "data": { "text/plain": [ "'Finished processing: First step complete.'" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from llama_index.core.workflow import Event\n", "import random\n", "\n", "\n", "class ProcessingEvent(Event):\n", " intermediate_result: str\n", "\n", "\n", "class LoopEvent(Event):\n", " loop_output: str\n", "\n", "\n", "class MultiStepWorkflow(Workflow):\n", " @step\n", " async def step_one(self, ev: StartEvent) -> ProcessingEvent | LoopEvent:\n", " if random.randint(0, 1) == 0:\n", " print(\"Bad thing happened\")\n", " return LoopEvent(loop_output=\"Back to step one.\")\n", " else:\n", " print(\"Good thing happened\")\n", " return ProcessingEvent(intermediate_result=\"First step complete.\")\n", "\n", " @step\n", " async def step_two(self, ev: ProcessingEvent | LoopEvent) -> StopEvent:\n", " # Use the intermediate result\n", " final_result = f\"Finished processing: {ev.intermediate_result}\"\n", " return StopEvent(result=final_result)\n", "\n", "\n", "w = MultiStepWorkflow(verbose=False)\n", "result = await w.run()\n", "result" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Drawing Workflows\n", "\n", "We can also draw workflows using the `draw_all_possible_flows` function.\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\n", "\n", "workflow_all_flows.html\n" ] } ], "source": [ "from llama_index.utils.workflow import draw_all_possible_flows\n", "\n", "draw_all_possible_flows(w)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![drawing](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/llama-index/workflow-draw.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### State Management\n", "\n", "Instead of passing the event information between steps, we can use the `Context` type hint to pass information between steps. \n", "This might be useful for long running workflows, where you want to store information between steps." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Query: What is the capital of France?\n" ] }, { "data": { "text/plain": [ "'Finished processing: Step 1 complete'" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from llama_index.core.workflow import Event, Context\n", "from llama_index.core.agent.workflow import ReActAgent\n", "\n", "\n", "class ProcessingEvent(Event):\n", " intermediate_result: str\n", "\n", "\n", "class MultiStepWorkflow(Workflow):\n", " @step\n", " async def step_one(self, ev: StartEvent, ctx: Context) -> ProcessingEvent:\n", " # Process initial data\n", " await ctx.set(\"query\", \"What is the capital of France?\")\n", " return ProcessingEvent(intermediate_result=\"Step 1 complete\")\n", "\n", " @step\n", " async def step_two(self, ev: ProcessingEvent, ctx: Context) -> StopEvent:\n", " # Use the intermediate result\n", " query = await ctx.get(\"query\")\n", " print(f\"Query: {query}\")\n", " final_result = f\"Finished processing: {ev.intermediate_result}\"\n", " return StopEvent(result=final_result)\n", "\n", "\n", "w = MultiStepWorkflow(timeout=10, verbose=False)\n", "result = await w.run()\n", "result" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Multi-Agent Workflows\n", "\n", "We can also create multi-agent workflows. Here we define two agents, one that multiplies two integers and one that adds two integers." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AgentOutput(response=ChatMessage(role=, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='I have handed off the request to an agent who can help you with adding 5 and 3. Please wait for their response.')]), tool_calls=[ToolCallResult(tool_name='handoff', tool_kwargs={'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}, tool_id='call_F97vcIcsvZjfAAOBzzIifW3y', tool_output=ToolOutput(content='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', tool_name='handoff', raw_input={'args': (), 'kwargs': {'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}}, raw_output='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', is_error=False), return_direct=True), ToolCallResult(tool_name='handoff', tool_kwargs={'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}, tool_id='call_jf49ktFRs09xYdOsnApAk2zz', tool_output=ToolOutput(content='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', tool_name='handoff', raw_input={'args': (), 'kwargs': {'to_agent': 'addition_agent', 'reason': 'Add 5 and 3'}}, raw_output='Agent addition_agent is now handling the request due to the following reason: Add 5 and 3.\\nPlease continue with the current request.', is_error=False), return_direct=True)], raw={'id': 'chatcmpl-B6Cy54VQkvlG3VOrmdzCzgwcJmVOc', 'choices': [{'delta': {'content': None, 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None}, 'finish_reason': 'stop', 'index': 0, 'logprobs': None}], 'created': 1740819517, 'model': 'gpt-3.5-turbo-0125', 'object': 'chat.completion.chunk', 'service_tier': 'default', 'system_fingerprint': None, 'usage': None}, current_agent_name='addition_agent')" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n", "\n", "# Define some tools\n", "def add(a: int, b: int) -> int:\n", " \"\"\"Add two numbers.\"\"\"\n", " return a + b\n", "\n", "def multiply(a: int, b: int) -> int:\n", " \"\"\"Multiply two numbers.\"\"\"\n", " return a * b\n", "\n", "llm = HuggingFaceInferenceAPI(model_name=\"Qwen/Qwen2.5-Coder-32B-Instruct\")\n", "\n", "# we can pass functions directly without FunctionTool -- the fn/docstring are parsed for the name/description\n", "multiply_agent = ReActAgent(\n", " name=\"multiply_agent\",\n", " description=\"Is able to multiply two integers\",\n", " system_prompt=\"A helpful assistant that can use a tool to multiply numbers.\",\n", " tools=[multiply], \n", " llm=llm,\n", ")\n", "\n", "addition_agent = ReActAgent(\n", " name=\"add_agent\",\n", " description=\"Is able to add two integers\",\n", " system_prompt=\"A helpful assistant that can use a tool to add numbers.\",\n", " tools=[add], \n", " llm=llm,\n", ")\n", "\n", "# Create the workflow\n", "workflow = AgentWorkflow(\n", " agents=[multiply_agent, addition_agent],\n", " root_agent=\"multiply_agent\"\n", ")\n", "\n", "# Run the system\n", "response = await workflow.run(user_msg=\"Can you add 5 and 3?\")" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 2 }