agercas commited on
Commit
9de200b
·
1 Parent(s): 291601d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.55 +/- 1.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf566a1e08dbfb5657a23764b357496e8de57c604357f28e0c6cf727bcc046e1
3
+ size 107768
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f92f07aef70>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f92f07b11b0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674325812861215713,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2rS5PkMajL21Hb0+2rS5PkMajL21Hb0+2rS5PkMajL21Hb0+2rS5PkMajL21Hb0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApfmDP970oL79riE+jEOOP0PqhD+DwXo/IbB5v6TTW79cU6w/sV3dvyZu+D4VLKS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADatLk+QxqMvbUdvT7xL4o9ztRovOQzYzzatLk+QxqMvbUdvT7xL4o9ztRovOQzYzzatLk+QxqMvbUdvT7xL4o9ztRovOQzYzzatLk+QxqMvbUdvT7xL4o9ztRovOQzYzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.3627079 -0.06840947 0.36936727]\n [ 0.3627079 -0.06840947 0.36936727]\n [ 0.3627079 -0.06840947 0.36936727]\n [ 0.3627079 -0.06840947 0.36936727]]",
60
+ "desired_goal": "[[ 1.031056 -0.3143682 0.15789409]\n [ 1.1114364 1.0383991 0.97951525]\n [-0.97534376 -0.8586981 1.3462939 ]\n [-1.7294217 0.48521537 -0.32064882]]",
61
+ "observation": "[[ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]\n [ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]\n [ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]\n [ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJHC9vVhD+jw/CAM+oQEtPf+vgL1k+S8+S16mvTk/DT6AKRU9EtGfvC1++L2seEc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.09249905 0.03054969 0.12796114]\n [ 0.04223788 -0.06283569 0.17184979]\n [-0.08123454 0.13793649 0.03641653]\n [-0.01950887 -0.12133441 0.19479626]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvFgYIqdv/7+UhpRSlIwBbJRLMowBdJRHQKkBC8La24N1fZQoaAZoCWgPQwgSwqONI9YBwJSGlFKUaBVLMmgWR0CpAIeqBErodX2UKGgGaAloD0MI85GU9DBUBcCUhpRSlGgVSzJoFkdAqP/8Eq2BrnV9lChoBmgJaA9DCOrL0k7NZQPAlIaUUpRoFUsyaBZHQKj/d0Rvm5l1fZQoaAZoCWgPQwhuF5rrNLIJwJSGlFKUaBVLMmgWR0CpAh0ZWJaadX2UKGgGaAloD0MIMUJ4tHGkBMCUhpRSlGgVSzJoFkdAqQGYT7EYO3V9lChoBmgJaA9DCGAgCJChgxLAlIaUUpRoFUsyaBZHQKkBDKJVKf51fZQoaAZoCWgPQwj3BfTCnWsHwJSGlFKUaBVLMmgWR0CpAIfJmukldX2UKGgGaAloD0MIA+li00pBDMCUhpRSlGgVSzJoFkdAqQMuh24d63V9lChoBmgJaA9DCOUqFr8pzAjAlIaUUpRoFUsyaBZHQKkCqdBjWkJ1fZQoaAZoCWgPQwil8+FZgswHwJSGlFKUaBVLMmgWR0CpAh5sCT2WdX2UKGgGaAloD0MIorPMIhTbBMCUhpRSlGgVSzJoFkdAqQGZtk4FR3V9lChoBmgJaA9DCDM2dLM/sAnAlIaUUpRoFUsyaBZHQKkENvze41B1fZQoaAZoCWgPQwiy9KEL6vsBwJSGlFKUaBVLMmgWR0CpA7I3BHkMdX2UKGgGaAloD0MIKV/QQgK2E8CUhpRSlGgVSzJoFkdAqQMmus90R3V9lChoBmgJaA9DCFeTp6ym6wHAlIaUUpRoFUsyaBZHQKkCoefZmI11fZQoaAZoCWgPQwimttRBXs8FwJSGlFKUaBVLMmgWR0CpBU01hsqKdX2UKGgGaAloD0MIsn+eBgySBsCUhpRSlGgVSzJoFkdAqQTIZVGTcXV9lChoBmgJaA9DCJ0tILQeXgXAlIaUUpRoFUsyaBZHQKkEPMOf/WF1fZQoaAZoCWgPQwgi/fZ14FwHwJSGlFKUaBVLMmgWR0CpA7frjYI0dX2UKGgGaAloD0MIw7tcxHdiCMCUhpRSlGgVSzJoFkdAqQZrWAf+0nV9lChoBmgJaA9DCD/EBgsnCQ7AlIaUUpRoFUsyaBZHQKkF5pRGc4J1fZQoaAZoCWgPQwiHNCpwss0IwJSGlFKUaBVLMmgWR0CpBVrronrqdX2UKGgGaAloD0MIMnOBy2PNA8CUhpRSlGgVSzJoFkdAqQTWHN5dGHV9lChoBmgJaA9DCOoFn+bkZRPAlIaUUpRoFUsyaBZHQKkHlufmLcd1fZQoaAZoCWgPQwjbUDHO3+QIwJSGlFKUaBVLMmgWR0CpBxJQtSQ6dX2UKGgGaAloD0MIwmhWtg+ZA8CUhpRSlGgVSzJoFkdAqQaGpVCHAXV9lChoBmgJaA9DCNz0Zz9SJAbAlIaUUpRoFUsyaBZHQKkGAfwI+nt1fZQoaAZoCWgPQwiMEvQXeoQLwJSGlFKUaBVLMmgWR0CpCKvbO/tZdX2UKGgGaAloD0MIejnsvmMoE8CUhpRSlGgVSzJoFkdAqQgnJDE3sHV9lChoBmgJaA9DCJuNlZhnpQfAlIaUUpRoFUsyaBZHQKkHm4Otnwp1fZQoaAZoCWgPQwglAtU/iIQIwJSGlFKUaBVLMmgWR0CpBxaVlf7adX2UKGgGaAloD0MItYtppntdC8CUhpRSlGgVSzJoFkdAqQnXO0LMLXV9lChoBmgJaA9DCCz0wTI2RBDAlIaUUpRoFUsyaBZHQKkJUpTdcjZ1fZQoaAZoCWgPQwiGyOnr+doJwJSGlFKUaBVLMmgWR0CpCMcB2fTTdX2UKGgGaAloD0MIJ0wYzcpWBcCUhpRSlGgVSzJoFkdAqQhCLGaQWHV9lChoBmgJaA9DCGZmZmZm5hDAlIaUUpRoFUsyaBZHQKkK6BreqJd1fZQoaAZoCWgPQwhcx7ji4ugEwJSGlFKUaBVLMmgWR0CpCmTPKMefdX2UKGgGaAloD0MIF2U2yCRDD8CUhpRSlGgVSzJoFkdAqQnaVGCqZXV9lChoBmgJaA9DCJazd0ZbdQvAlIaUUpRoFUsyaBZHQKkJVj6N2kl1fZQoaAZoCWgPQwjfxJCcTFwHwJSGlFKUaBVLMmgWR0CpDAPIGQjmdX2UKGgGaAloD0MIXP+uz5y1/r+UhpRSlGgVSzJoFkdAqQt++VTrFHV9lChoBmgJaA9DCNrk8EkncgjAlIaUUpRoFUsyaBZHQKkK8zrNW2h1fZQoaAZoCWgPQwib5bLROb8IwJSGlFKUaBVLMmgWR0CpCm5HVf/ndX2UKGgGaAloD0MIQZ3y6EaYAcCUhpRSlGgVSzJoFkdAqQ0pVKf4AXV9lChoBmgJaA9DCN4gWivaXALAlIaUUpRoFUsyaBZHQKkMpTpgTh51fZQoaAZoCWgPQwiy1lBqL6ILwJSGlFKUaBVLMmgWR0CpDBmnGbTddX2UKGgGaAloD0MIiSXl7nOsEcCUhpRSlGgVSzJoFkdAqQuU0P6KtXV9lChoBmgJaA9DCKfpswOuuxDAlIaUUpRoFUsyaBZHQKkOONBnjAB1fZQoaAZoCWgPQwjRd7eyRCcQwJSGlFKUaBVLMmgWR0CpDbP1lGwzdX2UKGgGaAloD0MItvgUAOPZBsCUhpRSlGgVSzJoFkdAqQ0oTVUdaXV9lChoBmgJaA9DCEfoZ+p1+xHAlIaUUpRoFUsyaBZHQKkMo2phnap1fZQoaAZoCWgPQwiIDRZO0jwDwJSGlFKUaBVLMmgWR0CpD1sqjJuEdX2UKGgGaAloD0MIlFD6QshZFMCUhpRSlGgVSzJoFkdAqQ7Wza9K3HV9lChoBmgJaA9DCMH9gAcGsAzAlIaUUpRoFUsyaBZHQKkOSx0MgEF1fZQoaAZoCWgPQwi9N4YA4JgMwJSGlFKUaBVLMmgWR0CpDcZMURFrdX2UKGgGaAloD0MItW0YBcFjAsCUhpRSlGgVSzJoFkdAqRB3N5dGAnV9lChoBmgJaA9DCLSs+8dCdAzAlIaUUpRoFUsyaBZHQKkP8m5UcXF1fZQoaAZoCWgPQwjNlUG1wZkUwJSGlFKUaBVLMmgWR0CpD2bTc6/7dX2UKGgGaAloD0MINsr6zcR0BsCUhpRSlGgVSzJoFkdAqQ7iDmKZUnV9lChoBmgJaA9DCCy4H/DAwBDAlIaUUpRoFUsyaBZHQKkRnLFn7Hh1fZQoaAZoCWgPQwiT5SSUvnAJwJSGlFKUaBVLMmgWR0CpERg0bcXWdX2UKGgGaAloD0MIM2spIO2fE8CUhpRSlGgVSzJoFkdAqRCMlb/wRXV9lChoBmgJaA9DCEQYP417gxLAlIaUUpRoFUsyaBZHQKkQB9tuUEB1fZQoaAZoCWgPQwgouFhRg6kHwJSGlFKUaBVLMmgWR0CpEq6Ss8xLdX2UKGgGaAloD0MIhXr6CPxBD8CUhpRSlGgVSzJoFkdAqRIp66asqHV9lChoBmgJaA9DCICfceFAKAvAlIaUUpRoFUsyaBZHQKkRnlBhQWN1fZQoaAZoCWgPQwgQWDm0yLYFwJSGlFKUaBVLMmgWR0CpERl+d9UkdX2UKGgGaAloD0MIo61KIvsAEMCUhpRSlGgVSzJoFkdAqRPE4JeE7HV9lChoBmgJaA9DCHNnJhjO9QrAlIaUUpRoFUsyaBZHQKkTQBreqJd1fZQoaAZoCWgPQwidg2dCk0QMwJSGlFKUaBVLMmgWR0CpErRywOe8dX2UKGgGaAloD0MISN45lKGqC8CUhpRSlGgVSzJoFkdAqRIvuVopQXV9lChoBmgJaA9DCAsqqn6l8wzAlIaUUpRoFUsyaBZHQKkU1QE6kqN1fZQoaAZoCWgPQwjE7GXbaYsKwJSGlFKUaBVLMmgWR0CpFFAogFHKdX2UKGgGaAloD0MItqFinL/5EcCUhpRSlGgVSzJoFkdAqRPEfxMFlnV9lChoBmgJaA9DCHwMVpxqrQ/AlIaUUpRoFUsyaBZHQKkTP6OYIB11fZQoaAZoCWgPQwjIYTB/hawBwJSGlFKUaBVLMmgWR0CpFgjw6QvIdX2UKGgGaAloD0MITaPJxRhoEMCUhpRSlGgVSzJoFkdAqRWEWRA8jnV9lChoBmgJaA9DCO9YbJOKZhXAlIaUUpRoFUsyaBZHQKkU+MuOCGx1fZQoaAZoCWgPQwg9mX/0TRoCwJSGlFKUaBVLMmgWR0CpFHRIre67dX2UKGgGaAloD0MIm8k329w4CMCUhpRSlGgVSzJoFkdAqRcsgntv43V9lChoBmgJaA9DCKiq0EAs2wzAlIaUUpRoFUsyaBZHQKkWp8IAwPB1fZQoaAZoCWgPQwh9zAcEOvMIwJSGlFKUaBVLMmgWR0CpFhwtJ4B4dX2UKGgGaAloD0MIroGtEixOD8CUhpRSlGgVSzJoFkdAqRWXOhTOxHV9lChoBmgJaA9DCDc4Ef3aGgrAlIaUUpRoFUsyaBZHQKkYNWXC0nh1fZQoaAZoCWgPQwha1ZKOcvAMwJSGlFKUaBVLMmgWR0CpF7CjUNKAdX2UKGgGaAloD0MIptO6DWq/DsCUhpRSlGgVSzJoFkdAqRclRDTjN3V9lChoBmgJaA9DCAtHkEqxAw3AlIaUUpRoFUsyaBZHQKkWoGwiaAp1fZQoaAZoCWgPQwhR24ZREHwKwJSGlFKUaBVLMmgWR0CpGUkUbkwOdX2UKGgGaAloD0MIjq7S3XX2G8CUhpRSlGgVSzJoFkdAqRjEhTwUg3V9lChoBmgJaA9DCH0G1JtRcw/AlIaUUpRoFUsyaBZHQKkYOQnx8Up1fZQoaAZoCWgPQwiuZMdGIN4GwJSGlFKUaBVLMmgWR0CpF7Qjt5UtdX2UKGgGaAloD0MIHCWvzjEwE8CUhpRSlGgVSzJoFkdAqRpl7rs0HnV9lChoBmgJaA9DCIhmnlxTIBHAlIaUUpRoFUsyaBZHQKkZ4U+s5n11fZQoaAZoCWgPQwiyTL9EvPUGwJSGlFKUaBVLMmgWR0CpGVWtuDSPdX2UKGgGaAloD0MI/dzQlJ1+CsCUhpRSlGgVSzJoFkdAqRjQy2x6fXV9lChoBmgJaA9DCPXZAdcVoxHAlIaUUpRoFUsyaBZHQKkbhYNiH7B1fZQoaAZoCWgPQwhruwm+afoSwJSGlFKUaBVLMmgWR0CpGwCuloDgdX2UKGgGaAloD0MI4etrXWpUEsCUhpRSlGgVSzJoFkdAqRp1BD5TInV9lChoBmgJaA9DCJ2DZ0KT5BrAlIaUUpRoFUsyaBZHQKkZ8CJ40Mx1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b213a618d5474f1ca01a42dc43b33428eb8f923bab7cee41684c595361610a6a
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed154ae105641355fa88fa34f5e20d4b0d02ce18a47bba3e18aa2c979ef1f93d
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f92f07aef70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f92f07b11b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674325812861215713, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2rS5PkMajL21Hb0+2rS5PkMajL21Hb0+2rS5PkMajL21Hb0+2rS5PkMajL21Hb0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApfmDP970oL79riE+jEOOP0PqhD+DwXo/IbB5v6TTW79cU6w/sV3dvyZu+D4VLKS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADatLk+QxqMvbUdvT7xL4o9ztRovOQzYzzatLk+QxqMvbUdvT7xL4o9ztRovOQzYzzatLk+QxqMvbUdvT7xL4o9ztRovOQzYzzatLk+QxqMvbUdvT7xL4o9ztRovOQzYzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3627079 -0.06840947 0.36936727]\n [ 0.3627079 -0.06840947 0.36936727]\n [ 0.3627079 -0.06840947 0.36936727]\n [ 0.3627079 -0.06840947 0.36936727]]", "desired_goal": "[[ 1.031056 -0.3143682 0.15789409]\n [ 1.1114364 1.0383991 0.97951525]\n [-0.97534376 -0.8586981 1.3462939 ]\n [-1.7294217 0.48521537 -0.32064882]]", "observation": "[[ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]\n [ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]\n [ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]\n [ 0.3627079 -0.06840947 0.36936727 0.06747425 -0.01421089 0.01386735]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJHC9vVhD+jw/CAM+oQEtPf+vgL1k+S8+S16mvTk/DT6AKRU9EtGfvC1++L2seEc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09249905 0.03054969 0.12796114]\n [ 0.04223788 -0.06283569 0.17184979]\n [-0.08123454 0.13793649 0.03641653]\n [-0.01950887 -0.12133441 0.19479626]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvFgYIqdv/7+UhpRSlIwBbJRLMowBdJRHQKkBC8La24N1fZQoaAZoCWgPQwgSwqONI9YBwJSGlFKUaBVLMmgWR0CpAIeqBErodX2UKGgGaAloD0MI85GU9DBUBcCUhpRSlGgVSzJoFkdAqP/8Eq2BrnV9lChoBmgJaA9DCOrL0k7NZQPAlIaUUpRoFUsyaBZHQKj/d0Rvm5l1fZQoaAZoCWgPQwhuF5rrNLIJwJSGlFKUaBVLMmgWR0CpAh0ZWJaadX2UKGgGaAloD0MIMUJ4tHGkBMCUhpRSlGgVSzJoFkdAqQGYT7EYO3V9lChoBmgJaA9DCGAgCJChgxLAlIaUUpRoFUsyaBZHQKkBDKJVKf51fZQoaAZoCWgPQwj3BfTCnWsHwJSGlFKUaBVLMmgWR0CpAIfJmukldX2UKGgGaAloD0MIA+li00pBDMCUhpRSlGgVSzJoFkdAqQMuh24d63V9lChoBmgJaA9DCOUqFr8pzAjAlIaUUpRoFUsyaBZHQKkCqdBjWkJ1fZQoaAZoCWgPQwil8+FZgswHwJSGlFKUaBVLMmgWR0CpAh5sCT2WdX2UKGgGaAloD0MIorPMIhTbBMCUhpRSlGgVSzJoFkdAqQGZtk4FR3V9lChoBmgJaA9DCDM2dLM/sAnAlIaUUpRoFUsyaBZHQKkENvze41B1fZQoaAZoCWgPQwiy9KEL6vsBwJSGlFKUaBVLMmgWR0CpA7I3BHkMdX2UKGgGaAloD0MIKV/QQgK2E8CUhpRSlGgVSzJoFkdAqQMmus90R3V9lChoBmgJaA9DCFeTp6ym6wHAlIaUUpRoFUsyaBZHQKkCoefZmI11fZQoaAZoCWgPQwimttRBXs8FwJSGlFKUaBVLMmgWR0CpBU01hsqKdX2UKGgGaAloD0MIsn+eBgySBsCUhpRSlGgVSzJoFkdAqQTIZVGTcXV9lChoBmgJaA9DCJ0tILQeXgXAlIaUUpRoFUsyaBZHQKkEPMOf/WF1fZQoaAZoCWgPQwgi/fZ14FwHwJSGlFKUaBVLMmgWR0CpA7frjYI0dX2UKGgGaAloD0MIw7tcxHdiCMCUhpRSlGgVSzJoFkdAqQZrWAf+0nV9lChoBmgJaA9DCD/EBgsnCQ7AlIaUUpRoFUsyaBZHQKkF5pRGc4J1fZQoaAZoCWgPQwiHNCpwss0IwJSGlFKUaBVLMmgWR0CpBVrronrqdX2UKGgGaAloD0MIMnOBy2PNA8CUhpRSlGgVSzJoFkdAqQTWHN5dGHV9lChoBmgJaA9DCOoFn+bkZRPAlIaUUpRoFUsyaBZHQKkHlufmLcd1fZQoaAZoCWgPQwjbUDHO3+QIwJSGlFKUaBVLMmgWR0CpBxJQtSQ6dX2UKGgGaAloD0MIwmhWtg+ZA8CUhpRSlGgVSzJoFkdAqQaGpVCHAXV9lChoBmgJaA9DCNz0Zz9SJAbAlIaUUpRoFUsyaBZHQKkGAfwI+nt1fZQoaAZoCWgPQwiMEvQXeoQLwJSGlFKUaBVLMmgWR0CpCKvbO/tZdX2UKGgGaAloD0MIejnsvmMoE8CUhpRSlGgVSzJoFkdAqQgnJDE3sHV9lChoBmgJaA9DCJuNlZhnpQfAlIaUUpRoFUsyaBZHQKkHm4Otnwp1fZQoaAZoCWgPQwglAtU/iIQIwJSGlFKUaBVLMmgWR0CpBxaVlf7adX2UKGgGaAloD0MItYtppntdC8CUhpRSlGgVSzJoFkdAqQnXO0LMLXV9lChoBmgJaA9DCCz0wTI2RBDAlIaUUpRoFUsyaBZHQKkJUpTdcjZ1fZQoaAZoCWgPQwiGyOnr+doJwJSGlFKUaBVLMmgWR0CpCMcB2fTTdX2UKGgGaAloD0MIJ0wYzcpWBcCUhpRSlGgVSzJoFkdAqQhCLGaQWHV9lChoBmgJaA9DCGZmZmZm5hDAlIaUUpRoFUsyaBZHQKkK6BreqJd1fZQoaAZoCWgPQwhcx7ji4ugEwJSGlFKUaBVLMmgWR0CpCmTPKMefdX2UKGgGaAloD0MIF2U2yCRDD8CUhpRSlGgVSzJoFkdAqQnaVGCqZXV9lChoBmgJaA9DCJazd0ZbdQvAlIaUUpRoFUsyaBZHQKkJVj6N2kl1fZQoaAZoCWgPQwjfxJCcTFwHwJSGlFKUaBVLMmgWR0CpDAPIGQjmdX2UKGgGaAloD0MIXP+uz5y1/r+UhpRSlGgVSzJoFkdAqQt++VTrFHV9lChoBmgJaA9DCNrk8EkncgjAlIaUUpRoFUsyaBZHQKkK8zrNW2h1fZQoaAZoCWgPQwib5bLROb8IwJSGlFKUaBVLMmgWR0CpCm5HVf/ndX2UKGgGaAloD0MIQZ3y6EaYAcCUhpRSlGgVSzJoFkdAqQ0pVKf4AXV9lChoBmgJaA9DCN4gWivaXALAlIaUUpRoFUsyaBZHQKkMpTpgTh51fZQoaAZoCWgPQwiy1lBqL6ILwJSGlFKUaBVLMmgWR0CpDBmnGbTddX2UKGgGaAloD0MIiSXl7nOsEcCUhpRSlGgVSzJoFkdAqQuU0P6KtXV9lChoBmgJaA9DCKfpswOuuxDAlIaUUpRoFUsyaBZHQKkOONBnjAB1fZQoaAZoCWgPQwjRd7eyRCcQwJSGlFKUaBVLMmgWR0CpDbP1lGwzdX2UKGgGaAloD0MItvgUAOPZBsCUhpRSlGgVSzJoFkdAqQ0oTVUdaXV9lChoBmgJaA9DCEfoZ+p1+xHAlIaUUpRoFUsyaBZHQKkMo2phnap1fZQoaAZoCWgPQwiIDRZO0jwDwJSGlFKUaBVLMmgWR0CpD1sqjJuEdX2UKGgGaAloD0MIlFD6QshZFMCUhpRSlGgVSzJoFkdAqQ7Wza9K3HV9lChoBmgJaA9DCMH9gAcGsAzAlIaUUpRoFUsyaBZHQKkOSx0MgEF1fZQoaAZoCWgPQwi9N4YA4JgMwJSGlFKUaBVLMmgWR0CpDcZMURFrdX2UKGgGaAloD0MItW0YBcFjAsCUhpRSlGgVSzJoFkdAqRB3N5dGAnV9lChoBmgJaA9DCLSs+8dCdAzAlIaUUpRoFUsyaBZHQKkP8m5UcXF1fZQoaAZoCWgPQwjNlUG1wZkUwJSGlFKUaBVLMmgWR0CpD2bTc6/7dX2UKGgGaAloD0MINsr6zcR0BsCUhpRSlGgVSzJoFkdAqQ7iDmKZUnV9lChoBmgJaA9DCCy4H/DAwBDAlIaUUpRoFUsyaBZHQKkRnLFn7Hh1fZQoaAZoCWgPQwiT5SSUvnAJwJSGlFKUaBVLMmgWR0CpERg0bcXWdX2UKGgGaAloD0MIM2spIO2fE8CUhpRSlGgVSzJoFkdAqRCMlb/wRXV9lChoBmgJaA9DCEQYP417gxLAlIaUUpRoFUsyaBZHQKkQB9tuUEB1fZQoaAZoCWgPQwgouFhRg6kHwJSGlFKUaBVLMmgWR0CpEq6Ss8xLdX2UKGgGaAloD0MIhXr6CPxBD8CUhpRSlGgVSzJoFkdAqRIp66asqHV9lChoBmgJaA9DCICfceFAKAvAlIaUUpRoFUsyaBZHQKkRnlBhQWN1fZQoaAZoCWgPQwgQWDm0yLYFwJSGlFKUaBVLMmgWR0CpERl+d9UkdX2UKGgGaAloD0MIo61KIvsAEMCUhpRSlGgVSzJoFkdAqRPE4JeE7HV9lChoBmgJaA9DCHNnJhjO9QrAlIaUUpRoFUsyaBZHQKkTQBreqJd1fZQoaAZoCWgPQwidg2dCk0QMwJSGlFKUaBVLMmgWR0CpErRywOe8dX2UKGgGaAloD0MISN45lKGqC8CUhpRSlGgVSzJoFkdAqRIvuVopQXV9lChoBmgJaA9DCAsqqn6l8wzAlIaUUpRoFUsyaBZHQKkU1QE6kqN1fZQoaAZoCWgPQwjE7GXbaYsKwJSGlFKUaBVLMmgWR0CpFFAogFHKdX2UKGgGaAloD0MItqFinL/5EcCUhpRSlGgVSzJoFkdAqRPEfxMFlnV9lChoBmgJaA9DCHwMVpxqrQ/AlIaUUpRoFUsyaBZHQKkTP6OYIB11fZQoaAZoCWgPQwjIYTB/hawBwJSGlFKUaBVLMmgWR0CpFgjw6QvIdX2UKGgGaAloD0MITaPJxRhoEMCUhpRSlGgVSzJoFkdAqRWEWRA8jnV9lChoBmgJaA9DCO9YbJOKZhXAlIaUUpRoFUsyaBZHQKkU+MuOCGx1fZQoaAZoCWgPQwg9mX/0TRoCwJSGlFKUaBVLMmgWR0CpFHRIre67dX2UKGgGaAloD0MIm8k329w4CMCUhpRSlGgVSzJoFkdAqRcsgntv43V9lChoBmgJaA9DCKiq0EAs2wzAlIaUUpRoFUsyaBZHQKkWp8IAwPB1fZQoaAZoCWgPQwh9zAcEOvMIwJSGlFKUaBVLMmgWR0CpFhwtJ4B4dX2UKGgGaAloD0MIroGtEixOD8CUhpRSlGgVSzJoFkdAqRWXOhTOxHV9lChoBmgJaA9DCDc4Ef3aGgrAlIaUUpRoFUsyaBZHQKkYNWXC0nh1fZQoaAZoCWgPQwha1ZKOcvAMwJSGlFKUaBVLMmgWR0CpF7CjUNKAdX2UKGgGaAloD0MIptO6DWq/DsCUhpRSlGgVSzJoFkdAqRclRDTjN3V9lChoBmgJaA9DCAtHkEqxAw3AlIaUUpRoFUsyaBZHQKkWoGwiaAp1fZQoaAZoCWgPQwhR24ZREHwKwJSGlFKUaBVLMmgWR0CpGUkUbkwOdX2UKGgGaAloD0MIjq7S3XX2G8CUhpRSlGgVSzJoFkdAqRjEhTwUg3V9lChoBmgJaA9DCH0G1JtRcw/AlIaUUpRoFUsyaBZHQKkYOQnx8Up1fZQoaAZoCWgPQwiuZMdGIN4GwJSGlFKUaBVLMmgWR0CpF7Qjt5UtdX2UKGgGaAloD0MIHCWvzjEwE8CUhpRSlGgVSzJoFkdAqRpl7rs0HnV9lChoBmgJaA9DCIhmnlxTIBHAlIaUUpRoFUsyaBZHQKkZ4U+s5n11fZQoaAZoCWgPQwiyTL9EvPUGwJSGlFKUaBVLMmgWR0CpGVWtuDSPdX2UKGgGaAloD0MI/dzQlJ1+CsCUhpRSlGgVSzJoFkdAqRjQy2x6fXV9lChoBmgJaA9DCPXZAdcVoxHAlIaUUpRoFUsyaBZHQKkbhYNiH7B1fZQoaAZoCWgPQwhruwm+afoSwJSGlFKUaBVLMmgWR0CpGwCuloDgdX2UKGgGaAloD0MI4etrXWpUEsCUhpRSlGgVSzJoFkdAqRp1BD5TInV9lChoBmgJaA9DCJ2DZ0KT5BrAlIaUUpRoFUsyaBZHQKkZ8CJ40Mx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (913 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.551040529087186, "std_reward": 1.135407213095023, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T19:23:53.060112"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59cfa2a41dadd314686ecf1e187ec18e21e24e5e7683ad0212852043cd5cca26
3
+ size 3056