File size: 1,429 Bytes
52dd602 0f3af0d 52dd602 b3e3821 52dd602 e7650e8 52dd602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
tags:
- FrozenLake-v1
- deep-reinforcement-learning
- reinforcement-learning
model-index:
- name: QDQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1
type: FrozenLake-v1
metrics:
- type: mean_reward
value: 0.12 +/- 0.0
name: mean_reward
verified: false
---
# **QDQN** Agent playing **FrozenLake-v1**
This is a trained model of a **QDQN** agent playing **FrozenLake-v1**
using the [qrl-dqn-gym](https://github.com/qdevpsi3/qrl-dqn-gym).
This agent has been trained for the [research project](https://github.com/agercas/QHack2023_QRL) during the QHack 2023
hackathon. The project explores the use of quantum algorithms in reinforcement learning.
More details about the project and the trained agent can be found in the [project repository](https://github.com/agercas/QHack2023_QRL).
## Usage
```python
import gym
import yaml
import torch
from model.qnn import QuantumNet
from hemodellpers.wrappers import BinaryWrapper
from model.agent import Agent
# Environment
env_name = 'FrozenLake-v1'
env = gym.make(env_name)
env = BinaryWrapper(env)
# Network
with open('config.yaml', 'r') as f:
hparams = yaml.safe_load(f)
net = QuantumNet(hparams['n_layers'])
state_dict = torch.load('qdqn-FrozenLake-v1.pt', map_location=torch.device('cpu'))
net.load_state_dict(state_dict)
# Agent
agent = Agent(net)
```
|