--- library_name: tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning model-index: - name: QDQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 metrics: - type: mean_reward value: 0.12 +/- 0.0 name: mean_reward verified: false --- # **QDQN** Agent playing **FrozenLake-v0** This is a trained model of a **QDQN** agent playing **FrozenLake-v0** using the [qrl-dqn-gym](https://github.com/qdevpsi3/qrl-dqn-gym). This agent has been trained for the [research project](https://github.com/agercas/QHack2023_QRL) during the QHack 2023 hackathon. The project explores the use of quantum algorithms in reinforcement learning. More details about the project and the trained agent can be found in the [project repository](https://github.com/agercas/QHack2023_QRL). ## Usage ```python import gym import yaml import torch from helpers.load import QuantumNet from helpers.wrappers import BinaryWrapper from helpers.agent import Agent # Environment env_name = 'FrozenLake-v1' env = gym.make(env_name) env = BinaryWrapper(env) # Network with open('config.yaml', 'r') as f: hparams = yaml.safe_load(f) net = QuantumNet(hparams['n_layers']) state_dict = torch.load('qdqn-FrozenLake-v1.pt', map_location=torch.device('cpu')) net.load_state_dict(state_dict) # Agent agent = Agent(net) ```