Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.16 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3272ae6107ed36781b7ee31361432dfae21e5fc8c3257ccba4fe5484a9688c50
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e676aadcf70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e676aae3c40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692537421055328597,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3miRvlsv8r55ZHY+VcBOPiDuMLqUa9I+1QIRv47o775ieaM+VcBOPiDuMLqUa9I+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeRlHvpXAj796Tos+Yvx6P4+8xj8BmAo/pMMBvqPwd7+ApUU/UzpXPtEZ4b7VsYg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADeaJG+Wy/yvnlkdj4tKwq/PCbWv0DnSD5VwE4+IO4wupRr0j5KPPE+nxg6u4jXwD7VAhG/jujvvmJ5oz4rLVK/wEzPv7aPYj9VwE4+IO4wupRr0j5KPPE+nxg6u4jXwD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.2840032 -0.47301754 0.24061765]\n [ 0.20190556 -0.00067494 0.410977 ]\n [-0.56644946 -0.46857113 0.31928545]\n [ 0.20190556 -0.00067494 0.410977 ]]",
|
34 |
+
"desired_goal": "[[-0.19443311 -1.1230646 0.2720831 ]\n [ 0.98041356 1.5526294 0.5413819 ]\n [-0.12672287 -0.9685156 0.7720566 ]\n [ 0.21018343 -0.4396501 1.067927 ]]",
|
35 |
+
"observation": "[[-2.8400320e-01 -4.7301754e-01 2.4061765e-01 -5.3972131e-01\n -1.6730418e+00 1.9619465e-01]\n [ 2.0190556e-01 -6.7493506e-04 4.1097701e-01 4.7116309e-01\n -2.8396023e-03 3.7664437e-01]\n [-5.6644946e-01 -4.6857113e-01 3.1928545e-01 -8.2100171e-01\n -1.6195297e+00 8.8500535e-01]\n [ 2.0190556e-01 -6.7493506e-04 4.1097701e-01 4.7116309e-01\n -2.8396023e-03 3.7664437e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMvILvv4wGz2z4Q8+eM2evDmnzL0cLYc+o2m+vb8swz2/WCQ+ww/PPOsLBT4KFG0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.13666609 0.03788852 0.14050941]\n [-0.01938508 -0.09992833 0.26401603]\n [-0.09297492 0.09530019 0.16049479]\n [ 0.02527607 0.12992828 0.23152176]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9Hp3X7Lt/qMAWyUSwOMAXSUR0ClsGwJw84hdX2UKGgGR7+78pCrtE5RaAdLAmgIR0ClsVqWcBludX2UKGgGR7/A801qFh5PaAdLAmgIR0ClsPgxBVuKdX2UKGgGR7/HbSJCSidraAdLA2gIR0ClsXI1tO2zdX2UKGgGR7/YsoDxLCemaAdLBGgIR0ClsIrEtNBXdX2UKGgGR7/I2UjcEeQuaAdLA2gIR0ClsRCAc1fmdX2UKGgGR7/aeOXE61b8aAdLBmgIR0ClsDNhNM4+dX2UKGgGR7+8cyWRigCfaAdLAmgIR0ClsYC04R29dX2UKGgGR7+10yP+4smOaAdLAmgIR0ClsR8r7O3VdX2UKGgGR7/cjVx0dRzjaAdLBGgIR0ClsKeGGmDUdX2UKGgGR7/VpDNQj2SMaAdLA2gIR0ClsZlg+hXbdX2UKGgGR7++ASWZ7XxwaAdLAmgIR0ClsTDUd7v5dX2UKGgGR7/eJwbVBlcyaAdLBGgIR0ClsFQV0tAcdX2UKGgGR7+htxdY4hllaAdLAWgIR0ClsaD9XLeRdX2UKGgGR7/JI3BHkLhKaAdLA2gIR0ClsL+j2zv7dX2UKGgGR7+1SUC7sfJWaAdLAmgIR0ClsGGAskIHdX2UKGgGR7+7Vd5Y5ksjaAdLAmgIR0Clsa6fBeoldX2UKGgGR7/KqABkqc3EaAdLA2gIR0ClsUYLb5/LdX2UKGgGR7/Pm5lOGj9GaAdLA2gIR0ClsNbjT8YRdX2UKGgGR7/Qdld1MdtEaAdLA2gIR0ClscXlCCz1dX2UKGgGR7/eDVYp2ECeaAdLBGgIR0ClsWOVX3g2dX2UKGgGR7/A6Mir1dxAaAdLAmgIR0ClsdNeD3/QdX2UKGgGR7+kOCoS+QEIaAdLAWgIR0ClsWqfOD8MdX2UKGgGR7/LjZtelbeNaAdLA2gIR0ClsOvUaybAdX2UKGgGR7+iDIzWPLgXaAdLAWgIR0ClsXHTy8SPdX2UKGgGR7/Ch4dIXj2jaAdLAmgIR0ClsPylvZRLdX2UKGgGR7/hcIzFdcB2aAdLCGgIR0ClsJ9si0OWdX2UKGgGR7/YGoJiRW92aAdLBGgIR0ClsfR7JGONdX2UKGgGR7/Pld1MdtEYaAdLA2gIR0ClsYvWH1vmdX2UKGgGR7/MdH2AXl8xaAdLA2gIR0ClsRaYE4ecdX2UKGgGR7/SlDneSB9UaAdLA2gIR0ClsLir1dxAdX2UKGgGR7/Fj8UEgW8AaAdLA2gIR0ClshWcSXdCdX2UKGgGR7/JLFGXokiVaAdLA2gIR0Clsa9P+GXYdX2UKGgGR7/BBHCoCMgmaAdLAmgIR0ClsTCuEEkjdX2UKGgGR7/CrK/20zCUaAdLAmgIR0ClsUCA2AG0dX2UKGgGR7/VmI0qH447aAdLBGgIR0ClsOM+eOGTdX2UKGgGR7/KdVea8YhuaAdLA2gIR0Clsce5OJtSdX2UKGgGR7+lTJhfBvaUaAdLAWgIR0ClsOr3sXzldX2UKGgGR7/g5SeiBXjmaAdLBGgIR0ClsjkyckMTdX2UKGgGR7+2EEkjX4CZaAdLAmgIR0ClsVGdiDujdX2UKGgGR7/Un752yLQ5aAdLA2gIR0ClsQdoWYWtdX2UKGgGR7/NgWJrLyMDaAdLA2gIR0ClslTDGcWkdX2UKGgGR7/XITXarWAgaAdLBGgIR0ClsexDb8FZdX2UKGgGR7/DQY1pCa7VaAdLA2gIR0ClsW2YOUdJdX2UKGgGR7+LVJ+UhV2iaAdLAWgIR0ClsfOBlMAWdX2UKGgGR7/HpOerdWQwaAdLA2gIR0ClsSF9roGIdX2UKGgGR7/VRq46Oo5xaAdLA2gIR0ClsnMSkCV9dX2UKGgGR7/G9mHxjJ+2aAdLA2gIR0ClsY4t6HCXdX2UKGgGR7/ABmwqy4WlaAdLAmgIR0ClsTdGy5ZsdX2UKGgGR7/WlYEGJN0vaAdLBGgIR0ClshwzLwF1dX2UKGgGR7/Cllbu+h4/aAdLAmgIR0ClsZ3eenQ6dX2UKGgGR7/TH+qBEroXaAdLA2gIR0Clso0ALiMpdX2UKGgGR7++8scyWRigaAdLAmgIR0ClsqBS1maqdX2UKGgGR7/VpfhMrVe8aAdLA2gIR0ClsjfDUExJdX2UKGgGR7/IJEYwZflZaAdLA2gIR0Clsbqr7wazdX2UKGgGR7/XOI68xsVMaAdLBGgIR0ClsVzHbRF7dX2UKGgGR7+pbQkX1rZbaAdLAWgIR0ClskO801qGdX2UKGgGR7/TR64UeuFIaAdLA2gIR0ClsdeyZ8a5dX2UKGgGR7/IwsXizcASaAdLA2gIR0ClsXtLteD4dX2UKGgGR7/aQEZBLPD6aAdLBGgIR0Clssir92ovdX2UKGgGR7/Sa4MF2V3VaAdLA2gIR0ClsmHR9gF5dX2UKGgGR7+2xdIGyHEdaAdLAmgIR0Clse7X6InCdX2UKGgGR7+96eGwiaAnaAdLAmgIR0ClsZEVnEl3dX2UKGgGR7+/kNnXd0q6aAdLAmgIR0Clst8+iaiLdX2UKGgGR7/U+m3vx6OYaAdLA2gIR0Clsn4R28qXdX2UKGgGR7/SV3ljmSyMaAdLA2gIR0Clsah6rvLHdX2UKGgGR7/KhBZ6lchUaAdLA2gIR0ClsvXV09yMdX2UKGgGR7+3XsgMc6vJaAdLAmgIR0Clso2CuloEdX2UKGgGR7/X3QUpNKywaAdLBGgIR0Clsg8lHBk7dX2UKGgGR7+gQYk3S8aoaAdLAWgIR0ClsbDyOJcgdX2UKGgGR7+X49HMEA5raAdLAWgIR0Clsp2ZZ0SzdX2UKGgGR7+6tp22Xsw+aAdLAmgIR0Clsw8hC+lCdX2UKGgGR7+3jjrAxi5NaAdLAmgIR0Clsii704BFdX2UKGgGR7+t/rjYI0IkaAdLAmgIR0Clscp3xFy8dX2UKGgGR7/FGKAJ9iMHaAdLAmgIR0ClsyCdSVGDdX2UKGgGR7/N0Qsf7rLRaAdLA2gIR0ClsrgieNDMdX2UKGgGR7+07KaG5+YuaAdLAmgIR0ClsdupS75EdX2UKGgGR7+vqHGjsUqQaAdLAmgIR0ClssvalDWtdX2UKGgGR7/WZb6guh9LaAdLBGgIR0Clsk1wYLssdX2UKGgGR7/SDnvDxb0OaAdLA2gIR0Clszx2KVIJdX2UKGgGR7/KOx0MgEEDaAdLA2gIR0Clsfcp1A7gdX2UKGgGR7/DjJ+2E0zkaAdLAmgIR0ClstuJDVpcdX2UKGgGR7/AHYYixFAnaAdLAmgIR0ClslyIP9UCdX2UKGgGR7/CK/mDDjzaaAdLAmgIR0Cls0sqSX+mdX2UKGgGR7+8chkiD/VBaAdLAmgIR0ClsunjABT5dX2UKGgGR7+5wcYIjW07aAdLAmgIR0Cls16vJRwZdX2UKGgGR7/NhxYJVsDXaAdLA2gIR0ClsndYGMXKdX2UKGgGR7/IH3UQTVUdaAdLA2gIR0ClswTlT3qSdX2UKGgGR7/Spyp71Iy1aAdLA2gIR0Cls3TTvy9VdX2UKGgGR7/LmW+oLofTaAdLA2gIR0Clso0HyEtedX2UKGgGR7/bNQCSzPa+aAdLB2gIR0Clsi8oH9m6dX2UKGgGR7+2LFXJYDDCaAdLAmgIR0ClsxQSamXPdX2UKGgGR7++UUwi7kGSaAdLAmgIR0Clsp/F72L6dX2UKGgGR7/InxaxHG0eaAdLA2gIR0Cls46Ogg5jdX2UKGgGR7/D6zE74i5eaAdLAmgIR0ClsyXmV7hOdX2UKGgGR7/LrylN1yNoaAdLA2gIR0ClskjpLVWkdX2UKGgGR7+58+iaiKziaAdLAmgIR0Cls5xgy/KydX2UKGgGR7/RDohY/3WXaAdLA2gIR0ClsrUpNKywdX2UKGgGR7/OREF4cFQmaAdLA2gIR0ClsztZNfw7dX2UKGgGR7/RLzf779AHaAdLA2gIR0Clsl4oRZlndWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19609cf813fb0f39dd53687eae89d80f57b2549455cbdd862562932dbcd5543c
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1723aefdb9abc02c6c5435e3ddf743a10e115904bca4258068e527569277b7c6
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e676aadcf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e676aae3c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692537421055328597, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3miRvlsv8r55ZHY+VcBOPiDuMLqUa9I+1QIRv47o775ieaM+VcBOPiDuMLqUa9I+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeRlHvpXAj796Tos+Yvx6P4+8xj8BmAo/pMMBvqPwd7+ApUU/UzpXPtEZ4b7VsYg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADeaJG+Wy/yvnlkdj4tKwq/PCbWv0DnSD5VwE4+IO4wupRr0j5KPPE+nxg6u4jXwD7VAhG/jujvvmJ5oz4rLVK/wEzPv7aPYj9VwE4+IO4wupRr0j5KPPE+nxg6u4jXwD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.2840032 -0.47301754 0.24061765]\n [ 0.20190556 -0.00067494 0.410977 ]\n [-0.56644946 -0.46857113 0.31928545]\n [ 0.20190556 -0.00067494 0.410977 ]]", "desired_goal": "[[-0.19443311 -1.1230646 0.2720831 ]\n [ 0.98041356 1.5526294 0.5413819 ]\n [-0.12672287 -0.9685156 0.7720566 ]\n [ 0.21018343 -0.4396501 1.067927 ]]", "observation": "[[-2.8400320e-01 -4.7301754e-01 2.4061765e-01 -5.3972131e-01\n -1.6730418e+00 1.9619465e-01]\n [ 2.0190556e-01 -6.7493506e-04 4.1097701e-01 4.7116309e-01\n -2.8396023e-03 3.7664437e-01]\n [-5.6644946e-01 -4.6857113e-01 3.1928545e-01 -8.2100171e-01\n -1.6195297e+00 8.8500535e-01]\n [ 2.0190556e-01 -6.7493506e-04 4.1097701e-01 4.7116309e-01\n -2.8396023e-03 3.7664437e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMvILvv4wGz2z4Q8+eM2evDmnzL0cLYc+o2m+vb8swz2/WCQ+ww/PPOsLBT4KFG0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13666609 0.03788852 0.14050941]\n [-0.01938508 -0.09992833 0.26401603]\n [-0.09297492 0.09530019 0.16049479]\n [ 0.02527607 0.12992828 0.23152176]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9Hp3X7Lt/qMAWyUSwOMAXSUR0ClsGwJw84hdX2UKGgGR7+78pCrtE5RaAdLAmgIR0ClsVqWcBludX2UKGgGR7/A801qFh5PaAdLAmgIR0ClsPgxBVuKdX2UKGgGR7/HbSJCSidraAdLA2gIR0ClsXI1tO2zdX2UKGgGR7/YsoDxLCemaAdLBGgIR0ClsIrEtNBXdX2UKGgGR7/I2UjcEeQuaAdLA2gIR0ClsRCAc1fmdX2UKGgGR7/aeOXE61b8aAdLBmgIR0ClsDNhNM4+dX2UKGgGR7+8cyWRigCfaAdLAmgIR0ClsYC04R29dX2UKGgGR7+10yP+4smOaAdLAmgIR0ClsR8r7O3VdX2UKGgGR7/cjVx0dRzjaAdLBGgIR0ClsKeGGmDUdX2UKGgGR7/VpDNQj2SMaAdLA2gIR0ClsZlg+hXbdX2UKGgGR7++ASWZ7XxwaAdLAmgIR0ClsTDUd7v5dX2UKGgGR7/eJwbVBlcyaAdLBGgIR0ClsFQV0tAcdX2UKGgGR7+htxdY4hllaAdLAWgIR0ClsaD9XLeRdX2UKGgGR7/JI3BHkLhKaAdLA2gIR0ClsL+j2zv7dX2UKGgGR7+1SUC7sfJWaAdLAmgIR0ClsGGAskIHdX2UKGgGR7+7Vd5Y5ksjaAdLAmgIR0Clsa6fBeoldX2UKGgGR7/KqABkqc3EaAdLA2gIR0ClsUYLb5/LdX2UKGgGR7/Pm5lOGj9GaAdLA2gIR0ClsNbjT8YRdX2UKGgGR7/Qdld1MdtEaAdLA2gIR0ClscXlCCz1dX2UKGgGR7/eDVYp2ECeaAdLBGgIR0ClsWOVX3g2dX2UKGgGR7/A6Mir1dxAaAdLAmgIR0ClsdNeD3/QdX2UKGgGR7+kOCoS+QEIaAdLAWgIR0ClsWqfOD8MdX2UKGgGR7/LjZtelbeNaAdLA2gIR0ClsOvUaybAdX2UKGgGR7+iDIzWPLgXaAdLAWgIR0ClsXHTy8SPdX2UKGgGR7/Ch4dIXj2jaAdLAmgIR0ClsPylvZRLdX2UKGgGR7/hcIzFdcB2aAdLCGgIR0ClsJ9si0OWdX2UKGgGR7/YGoJiRW92aAdLBGgIR0ClsfR7JGONdX2UKGgGR7/Pld1MdtEYaAdLA2gIR0ClsYvWH1vmdX2UKGgGR7/MdH2AXl8xaAdLA2gIR0ClsRaYE4ecdX2UKGgGR7/SlDneSB9UaAdLA2gIR0ClsLir1dxAdX2UKGgGR7/Fj8UEgW8AaAdLA2gIR0ClshWcSXdCdX2UKGgGR7/JLFGXokiVaAdLA2gIR0Clsa9P+GXYdX2UKGgGR7/BBHCoCMgmaAdLAmgIR0ClsTCuEEkjdX2UKGgGR7/CrK/20zCUaAdLAmgIR0ClsUCA2AG0dX2UKGgGR7/VmI0qH447aAdLBGgIR0ClsOM+eOGTdX2UKGgGR7/KdVea8YhuaAdLA2gIR0Clsce5OJtSdX2UKGgGR7+lTJhfBvaUaAdLAWgIR0ClsOr3sXzldX2UKGgGR7/g5SeiBXjmaAdLBGgIR0ClsjkyckMTdX2UKGgGR7+2EEkjX4CZaAdLAmgIR0ClsVGdiDujdX2UKGgGR7/Un752yLQ5aAdLA2gIR0ClsQdoWYWtdX2UKGgGR7/NgWJrLyMDaAdLA2gIR0ClslTDGcWkdX2UKGgGR7/XITXarWAgaAdLBGgIR0ClsexDb8FZdX2UKGgGR7/DQY1pCa7VaAdLA2gIR0ClsW2YOUdJdX2UKGgGR7+LVJ+UhV2iaAdLAWgIR0ClsfOBlMAWdX2UKGgGR7/HpOerdWQwaAdLA2gIR0ClsSF9roGIdX2UKGgGR7/VRq46Oo5xaAdLA2gIR0ClsnMSkCV9dX2UKGgGR7/G9mHxjJ+2aAdLA2gIR0ClsY4t6HCXdX2UKGgGR7/ABmwqy4WlaAdLAmgIR0ClsTdGy5ZsdX2UKGgGR7/WlYEGJN0vaAdLBGgIR0ClshwzLwF1dX2UKGgGR7/Cllbu+h4/aAdLAmgIR0ClsZ3eenQ6dX2UKGgGR7/TH+qBEroXaAdLA2gIR0Clso0ALiMpdX2UKGgGR7++8scyWRigaAdLAmgIR0ClsqBS1maqdX2UKGgGR7/VpfhMrVe8aAdLA2gIR0ClsjfDUExJdX2UKGgGR7/IJEYwZflZaAdLA2gIR0Clsbqr7wazdX2UKGgGR7/XOI68xsVMaAdLBGgIR0ClsVzHbRF7dX2UKGgGR7+pbQkX1rZbaAdLAWgIR0ClskO801qGdX2UKGgGR7/TR64UeuFIaAdLA2gIR0ClsdeyZ8a5dX2UKGgGR7/IwsXizcASaAdLA2gIR0ClsXtLteD4dX2UKGgGR7/aQEZBLPD6aAdLBGgIR0Clssir92ovdX2UKGgGR7/Sa4MF2V3VaAdLA2gIR0ClsmHR9gF5dX2UKGgGR7+2xdIGyHEdaAdLAmgIR0Clse7X6InCdX2UKGgGR7+96eGwiaAnaAdLAmgIR0ClsZEVnEl3dX2UKGgGR7+/kNnXd0q6aAdLAmgIR0Clst8+iaiLdX2UKGgGR7/U+m3vx6OYaAdLA2gIR0Clsn4R28qXdX2UKGgGR7/SV3ljmSyMaAdLA2gIR0Clsah6rvLHdX2UKGgGR7/KhBZ6lchUaAdLA2gIR0ClsvXV09yMdX2UKGgGR7+3XsgMc6vJaAdLAmgIR0Clso2CuloEdX2UKGgGR7/X3QUpNKywaAdLBGgIR0Clsg8lHBk7dX2UKGgGR7+gQYk3S8aoaAdLAWgIR0ClsbDyOJcgdX2UKGgGR7+X49HMEA5raAdLAWgIR0Clsp2ZZ0SzdX2UKGgGR7+6tp22Xsw+aAdLAmgIR0Clsw8hC+lCdX2UKGgGR7+3jjrAxi5NaAdLAmgIR0Clsii704BFdX2UKGgGR7+t/rjYI0IkaAdLAmgIR0Clscp3xFy8dX2UKGgGR7/FGKAJ9iMHaAdLAmgIR0ClsyCdSVGDdX2UKGgGR7/N0Qsf7rLRaAdLA2gIR0ClsrgieNDMdX2UKGgGR7+07KaG5+YuaAdLAmgIR0ClsdupS75EdX2UKGgGR7+vqHGjsUqQaAdLAmgIR0ClssvalDWtdX2UKGgGR7/WZb6guh9LaAdLBGgIR0Clsk1wYLssdX2UKGgGR7/SDnvDxb0OaAdLA2gIR0Clszx2KVIJdX2UKGgGR7/KOx0MgEEDaAdLA2gIR0Clsfcp1A7gdX2UKGgGR7/DjJ+2E0zkaAdLAmgIR0ClstuJDVpcdX2UKGgGR7/AHYYixFAnaAdLAmgIR0ClslyIP9UCdX2UKGgGR7/CK/mDDjzaaAdLAmgIR0Cls0sqSX+mdX2UKGgGR7+8chkiD/VBaAdLAmgIR0ClsunjABT5dX2UKGgGR7+5wcYIjW07aAdLAmgIR0Cls16vJRwZdX2UKGgGR7/NhxYJVsDXaAdLA2gIR0ClsndYGMXKdX2UKGgGR7/IH3UQTVUdaAdLA2gIR0ClswTlT3qSdX2UKGgGR7/Spyp71Iy1aAdLA2gIR0Cls3TTvy9VdX2UKGgGR7/LmW+oLofTaAdLA2gIR0Clso0HyEtedX2UKGgGR7/bNQCSzPa+aAdLB2gIR0Clsi8oH9m6dX2UKGgGR7+2LFXJYDDCaAdLAmgIR0ClsxQSamXPdX2UKGgGR7++UUwi7kGSaAdLAmgIR0Clsp/F72L6dX2UKGgGR7/InxaxHG0eaAdLA2gIR0Cls46Ogg5jdX2UKGgGR7/D6zE74i5eaAdLAmgIR0ClsyXmV7hOdX2UKGgGR7/LrylN1yNoaAdLA2gIR0ClskjpLVWkdX2UKGgGR7+58+iaiKziaAdLAmgIR0Cls5xgy/KydX2UKGgGR7/RDohY/3WXaAdLA2gIR0ClsrUpNKywdX2UKGgGR7/OREF4cFQmaAdLA2gIR0ClsztZNfw7dX2UKGgGR7/RLzf779AHaAdLA2gIR0Clsl4oRZlndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (689 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.16326066814363002, "std_reward": 0.08746092856996494, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-20T14:03:18.462938"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c52c125455fdcf5d5f6f40da7bf534d118e158b27f18a35ae37f5683fa5f9f0
|
3 |
+
size 2623
|