--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-facial-expression results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7378253732509966 - name: Precision type: precision value: 0.7302570858866146 - name: Recall type: recall value: 0.7378253732509966 - name: F1 type: f1 value: 0.7274264799279716 --- # vit-facial-expression This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8099 - Accuracy: 0.7378 - Precision: 0.7303 - Recall: 0.7378 - F1: 0.7274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.0154 | 0.4831 | 100 | 1.8473 | 0.3168 | 0.3005 | 0.3168 | 0.1961 | | 1.569 | 0.9662 | 200 | 1.3372 | 0.5767 | 0.5110 | 0.5767 | 0.4926 | | 1.185 | 1.4493 | 300 | 1.1047 | 0.6474 | 0.5805 | 0.6474 | 0.5937 | | 1.044 | 1.9324 | 400 | 0.9638 | 0.6896 | 0.6787 | 0.6896 | 0.6611 | | 0.8813 | 2.4155 | 500 | 0.8928 | 0.7005 | 0.6822 | 0.7005 | 0.6646 | | 0.7925 | 2.8986 | 600 | 0.8209 | 0.7301 | 0.7183 | 0.7301 | 0.7186 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3