Text-to-Image
Diffusers
English
Harshit Agarwal commited on
Commit
ee90412
·
1 Parent(s): 3896b0b

slides added

Browse files
model/model.py CHANGED
@@ -14,7 +14,7 @@ class Block(nn.Module):
14
  super().__init__()
15
  self.time_mlp = nn.Linear(time_emb_dim, out_ch)
16
  if up:
17
- ## up channel - go big big big bigg from smol smol smol with 3x3 kernel
18
  self.conv1 = nn.Conv2d(2*in_ch, out_ch, 3, padding=1)
19
  self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1)
20
  else:
 
14
  super().__init__()
15
  self.time_mlp = nn.Linear(time_emb_dim, out_ch)
16
  if up:
17
+ ## up channel - gobig big big bigg from smol smol smol with 3x3 kernel
18
  self.conv1 = nn.Conv2d(2*in_ch, out_ch, 3, padding=1)
19
  self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1)
20
  else:
model/precomputes.py CHANGED
@@ -3,7 +3,7 @@ from torch.nn import functional as F
3
 
4
  T = 300 ## according to the paper
5
 
6
- ### SOO MMANNYY PRECOMPUTEDD VALUESS TO TRACKKKK
7
  betas = torch.linspace(1e-4, 0.02, T)
8
  alphas = 1. - betas
9
  alphas_cumulative_products = torch.cumprod(alphas, axis=0)
 
3
 
4
  T = 300 ## according to the paper
5
 
6
+ ### SOO MMANNYY PRECOMPUTEDD VALUESS TO TRACKKKKSS
7
  betas = torch.linspace(1e-4, 0.02, T)
8
  alphas = 1. - betas
9
  alphas_cumulative_products = torch.cumprod(alphas, axis=0)
slides/DDPM - Basics (1).pdf ADDED
The diff for this file is too large to render. See raw diff