import torch from torch import nn import math import torch.nn.functional as F class SelfAttention(nn.Module): def __init__(self, chs, num_heads=1, ffn_expansion=4, dropout=0.1): super().__init__() self.norm = nn.LayerNorm(chs) self.attn = nn.MultiheadAttention(embed_dim=chs, num_heads=num_heads, batch_first=True) self.ffn = nn.Sequential( nn.Linear(chs, chs*ffn_expansion), nn.GELU(), nn.Linear(chs*ffn_expansion, chs) ) self.norm2 = nn.LayerNorm(chs) self.dropout = nn.Dropout(dropout) def forward(self, x): b,c,h,w = x.shape x_reshaped = x.view(b,c,h*w).transpose(1,2) attn_out, _ = self.attn(self.norm(x_reshaped), self.norm(x_reshaped), self.norm(x_reshaped)) x_attn = x_reshaped + self.dropout(attn_out) ffn_out = self.ffn(self.norm2(x_attn)) x_out = x_attn + self.dropout(ffn_out) x_out = x_out.transpose(1,2).view(b,c,h,w) return x_out class CBAM(nn.Module): def __init__(self,chs, reduction=16): super().__init__() self.channel_attn = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(chs, chs//reduction, 1), nn.ReLU(), nn.Conv2d(chs//reduction, chs, 1), nn.Sigmoid() ) self.spatial_attn = nn.Sequential( nn.Conv2d(2,1,kernel_size=7,padding=3), nn.Sigmoid() ) def forward(self,x): ch_wt = self.channel_attn(x) x = x*ch_wt avg_pool = torch.mean(x, dim=1, keepdim=True) max_pool, _ = torch.max(x, dim=1, keepdim=True) sp_wt = self.spatial_attn(torch.cat([avg_pool, max_pool], dim=1)) x = x* sp_wt return x class Block_CBAM(nn.Module): def __init__(self, in_ch, out_ch, time_emb_dim, up=False): super().__init__() self.time_mlp = nn.Linear(time_emb_dim, out_ch) if up: ## up channel - go big big big bigg from smol smol smol with 3x3 kernel self.conv1 = nn.Conv2d(2*in_ch, out_ch, 3, padding=1) self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1) else: self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1) self.transform = nn.Conv2d(out_ch, out_ch, 4,2,1) self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1) self.relu = nn.ReLU() self.batch_norm1 = nn.BatchNorm2d(out_ch) self.batch_norm2 = nn.BatchNorm2d(out_ch) self.cbam = CBAM(out_ch) def forward(self, x, t, ): h = self.batch_norm1(self.relu(self.conv1(x))) time_emb = self.relu(self.time_mlp(t)) time_emb = time_emb[(..., ) + (None, ) * 2] h = h + time_emb h = self.batch_norm2(self.relu(self.conv2(h))) h = self.cbam(h) return self.transform(h)