Ahmad Alismail commited on
Commit
8f3279c
·
1 Parent(s): 23b55ef

Vanilla LunarLander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.90 +/- 20.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe18ca7a670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe18ca7a700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe18ca7a790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe18ca7a820>", "_build": "<function ActorCriticPolicy._build at 0x7fe18ca7a8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe18ca7a940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe18ca7a9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe18ca7aa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe18ca7aaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe18ca7ab80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe18ca7ac10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe18ca7aca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe18ca74810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673444195993155220, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGCYOb4Ljbo/E+bmvgulYL5Xo5G+16etvQAAAAAAAAAAAMVKvUgLrLrhRj66elGaNb5D0ria2Vg5AACAPwAAgD8ASHW7wwUwupA3ILvc9Ki2OmXzuidoOToAAIA/AACAP3MHsr0pGGi6I14wughlhLdPZhE6/R0SOQAAgD8AAIA/ANajPAqnD7mjbj+5E2VZtICX1rr9mWA4AACAPwAAgD9mbxS9Kdxkukqn2Lu9KoY2OnoIOxp097UAAIA/AACAP2Zt07wCYQ0/61z8PXbeX77ff6E9S/PROgAAAAAAAAAAMykQvT2KabkxIho6xHxXtNEwoLtwqTe5AACAPwAAgD+mOMU9Y7pTP+WX07yJq3q+yS6fPPIXNT0AAAAAAAAAAA2Zsr0pXFe69ge0uAH3STYygQ+7W0PbNwAAgD8AAIA/zStavez+rrs6D4M6HN01PJuDAz0HwR69AACAPwAAgD+a/kC9rnWSugI+z7kz/Ce1huupuo5T8DgAAIA/AACAPya2Mz4MPPg+M2hTvp/BZ76qD788AxPsvAAAAAAAAAAAQGaIPY+afrpak+07izCpN/LVNLsi8TQ2AACAPwAAgD9ghm2+bTFzP4bedz3sQXu+T14Tvupypz0AAAAAAAAAAOZb4L3mojA/+TYtPU1MVr6Itya9n62MPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+nq+ZrnEYECUhpRSlIwBbJRN6AOMAXSUR0Ci5gl23azvdX2UKGgGaAloD0MIAtTUsrX5X0CUhpRSlGgVTegDaBZHQKLnO6pYLb51fZQoaAZoCWgPQwjQnPUpxyljQJSGlFKUaBVN6ANoFkdAourFQwblzXV9lChoBmgJaA9DCA1RhT/DLWZAlIaUUpRoFU3oA2gWR0Ci76e5nUUgdX2UKGgGaAloD0MImurJ/KM6Y0CUhpRSlGgVTegDaBZHQKLvy1mapgl1fZQoaAZoCWgPQwiQatjviQUTQJSGlFKUaBVNJQFoFkdAou/u3pfQbHV9lChoBmgJaA9DCD1kyoegAGJAlIaUUpRoFU3oA2gWR0Ci8Kjdgv12dX2UKGgGaAloD0MIPSzUmmaQY0CUhpRSlGgVTegDaBZHQKLx//jKgZl1fZQoaAZoCWgPQwjYg0nx8R07QJSGlFKUaBVL8WgWR0Ci8s+XJHRUdX2UKGgGaAloD0MI/g+wVu12XkCUhpRSlGgVTegDaBZHQKLzlJ6po9N1fZQoaAZoCWgPQwhwQiECDnFgQJSGlFKUaBVN6ANoFkdAovSRzaK1onV9lChoBmgJaA9DCPlkxXD1YGVAlIaUUpRoFU3oA2gWR0Ci+BUYbbUPdX2UKGgGaAloD0MIG7rZHygCZECUhpRSlGgVTegDaBZHQKL5GFPi1iR1fZQoaAZoCWgPQwjKUuv9xlZjQJSGlFKUaBVN6ANoFkdAowOE4aP0ZnV9lChoBmgJaA9DCAUWwJQBcmVAlIaUUpRoFU3oA2gWR0CjA5zltCRfdX2UKGgGaAloD0MIyXGndLCsX0CUhpRSlGgVTegDaBZHQKMEyTfzjFR1fZQoaAZoCWgPQwgnTYOi+fdhQJSGlFKUaBVN6ANoFkdAowaxjlPrOnV9lChoBmgJaA9DCNvBiH2CM2JAlIaUUpRoFU3oA2gWR0CjCTOeSSvDdX2UKGgGaAloD0MIRIZVvBFfYUCUhpRSlGgVTegDaBZHQKMOs/LTx5N1fZQoaAZoCWgPQwjpDIy8rEtOQJSGlFKUaBVL92gWR0CjEEowdsBRdX2UKGgGaAloD0MIM6g2OJFuZUCUhpRSlGgVTegDaBZHQKMWV9itq591fZQoaAZoCWgPQwhbP/1nTadmQJSGlFKUaBVN6ANoFkdAoxZ4aFVT73V9lChoBmgJaA9DCDJ3LSGfSWRAlIaUUpRoFU3oA2gWR0CjFpc76pHadX2UKGgGaAloD0MIN1DgnXwUZECUhpRSlGgVTegDaBZHQKMXNm7J4jd1fZQoaAZoCWgPQwh8KxITVAVnQJSGlFKUaBVN6ANoFkdAoxhqkoF3ZHV9lChoBmgJaA9DCLfsEP+w3WRAlIaUUpRoFU3oA2gWR0CjGRxDLKV6dX2UKGgGaAloD0MIZ9R8lfy3Y0CUhpRSlGgVTegDaBZHQKMZyiV0Lc91fZQoaAZoCWgPQwhjfQOTmwxnQJSGlFKUaBVN6ANoFkdAoxqr/Ot4iXV9lChoBmgJaA9DCKOVe4FZtmNAlIaUUpRoFU3oA2gWR0CjHbtdzGPxdX2UKGgGaAloD0MI0JhJ1IuYYECUhpRSlGgVTegDaBZHQKMep+GXXy11fZQoaAZoCWgPQwiRC87gbxdkQJSGlFKUaBVN6ANoFkdAoykmZ7Xxv3V9lChoBmgJaA9DCL0aoDTUAmNAlIaUUpRoFU3oA2gWR0CjKTzrmhdudX2UKGgGaAloD0MIoBhZMkfdZECUhpRSlGgVTegDaBZHQKMqeDuBtk51fZQoaAZoCWgPQwiBfAkVHFldQJSGlFKUaBVN6ANoFkdAoyxcRUWEb3V9lChoBmgJaA9DCD24O2u33GNAlIaUUpRoFU3oA2gWR0CjNaj/2kBTdX2UKGgGaAloD0MIkxgEVo7tYUCUhpRSlGgVTegDaBZHQKM3buLrHEN1fZQoaAZoCWgPQwi46jpUU61iQJSGlFKUaBVN6ANoFkdAoz2iBRQ793V9lChoBmgJaA9DCJmghm/hkGNAlIaUUpRoFU3oA2gWR0CjPcC7kGRndX2UKGgGaAloD0MI7lpCPuiDY0CUhpRSlGgVTegDaBZHQKM94gA6uGN1fZQoaAZoCWgPQwhDq5MzFH1kQJSGlFKUaBVN6ANoFkdAoz53kHUtqnV9lChoBmgJaA9DCMPy59uCemdAlIaUUpRoFU3oA2gWR0CjP5PUjLSvdX2UKGgGaAloD0MIH4DUJk6OZkCUhpRSlGgVTegDaBZHQKNARNdqtYB1fZQoaAZoCWgPQwgIlE25QollQJSGlFKUaBVN6ANoFkdAo0DckfLcK3V9lChoBmgJaA9DCIy9F1+0/WBAlIaUUpRoFU3oA2gWR0CjQa/mknCwdX2UKGgGaAloD0MI860P640MZUCUhpRSlGgVTegDaBZHQKNEmoc7yQR1fZQoaAZoCWgPQwiRCmMLwVJhQJSGlFKUaBVN6ANoFkdAo0V6w2VE/nV9lChoBmgJaA9DCCAMPPcey1tAlIaUUpRoFU3oA2gWR0CjRrYOc2BKdX2UKGgGaAloD0MIQ67UsyD9Y0CUhpRSlGgVTegDaBZHQKNGy7Bfrrx1fZQoaAZoCWgPQwg0MPKyJlJmQJSGlFKUaBVN6ANoFkdAo1Ee43FUAHV9lChoBmgJaA9DCN/A5EYRH2JAlIaUUpRoFU3oA2gWR0CjUuH9WIXTdX2UKGgGaAloD0MIbhYvFgaAYkCUhpRSlGgVTegDaBZHQKNa4CPp6hR1fZQoaAZoCWgPQwilhjYAG4dkQJSGlFKUaBVN6ANoFkdAo1x3Sx7iQ3V9lChoBmgJaA9DCLfT1ohgIGJAlIaUUpRoFU3oA2gWR0CjYlb1h9b5dX2UKGgGaAloD0MIfH4YITxFaECUhpRSlGgVTegDaBZHQKNieC5Etul1fZQoaAZoCWgPQwi3XWiu07NiQJSGlFKUaBVN6ANoFkdAo2KWwA2hqXV9lChoBmgJaA9DCPGbwkoFZ19AlIaUUpRoFU3oA2gWR0CjYzaYeDFqdX2UKGgGaAloD0MIfQT+8PM+Y0CUhpRSlGgVTegDaBZHQKNkS18b70p1fZQoaAZoCWgPQwgkm6vmuXxlQJSGlFKUaBVN6ANoFkdAo2TypFTef3V9lChoBmgJaA9DCP0tAfgniGhAlIaUUpRoFU3oA2gWR0CjZYmjCYTkdX2UKGgGaAloD0MI1esWgbELZUCUhpRSlGgVTegDaBZHQKNmWzKs+3Z1fZQoaAZoCWgPQwjlX8sr1xxTQJSGlFKUaBVL/mgWR0CjaKKUNayKdX2UKGgGaAloD0MI7Pma5bI4XUCUhpRSlGgVTegDaBZHQKNpJci4axZ1fZQoaAZoCWgPQwgEOpM2VSRhQJSGlFKUaBVN6ANoFkdAo2n1Z1V5r3V9lChoBmgJaA9DCF5Ih4ewkGNAlIaUUpRoFU3oA2gWR0Cjaw1s1sLwdX2UKGgGaAloD0MIbLJGPUTJYkCUhpRSlGgVTegDaBZHQKNrIKneizt1fZQoaAZoCWgPQwhNSGsMutNlQJSGlFKUaBVN6ANoFkdAo3WJYFJQL3V9lChoBmgJaA9DCCV4QxqVj2BAlIaUUpRoFU3oA2gWR0Cjdz33pOerdX2UKGgGaAloD0MIqP3WTpSYQ0CUhpRSlGgVTRABaBZHQKN/KAQQL/l1fZQoaAZoCWgPQwjsiEM2ECJlQJSGlFKUaBVN6ANoFkdAo3+O0VrRB3V9lChoBmgJaA9DCP1s5LopqmNAlIaUUpRoFU3oA2gWR0CjgR/3FkxzdX2UKGgGaAloD0MIcVRuopYhaECUhpRSlGgVTegDaBZHQKOG4YpDu0F1fZQoaAZoCWgPQwjfUPhsnQ5kQJSGlFKUaBVN6ANoFkdAo4b+5hBqsXV9lChoBmgJaA9DCAsIrYevEGZAlIaUUpRoFU3oA2gWR0Cjh5gP3BYWdX2UKGgGaAloD0MI0VlmEQr/YECUhpRSlGgVTegDaBZHQKOIvNSqEOB1fZQoaAZoCWgPQwhF1hpK7aZjQJSGlFKUaBVN6ANoFkdAo4lxUgjhUHV9lChoBmgJaA9DCLzplh3iyF1AlIaUUpRoFU3oA2gWR0CjihN70Fr3dX2UKGgGaAloD0MI31LOF/sLYkCUhpRSlGgVTegDaBZHQKOK8UJOWSl1fZQoaAZoCWgPQwhrgxPRL2xjQJSGlFKUaBVN6ANoFkdAo41dgfEGaHV9lChoBmgJaA9DCA+3Q8NigltAlIaUUpRoFU3oA2gWR0CjjeTxgAp8dX2UKGgGaAloD0MIBDdStkguaECUhpRSlGgVTegDaBZHQKOOxR9gF5h1fZQoaAZoCWgPQwihnj4C/+ZgQJSGlFKUaBVN6ANoFkdAo4/ZMURFqnV9lChoBmgJaA9DCCgn2lXI0mFAlIaUUpRoFU3oA2gWR0Cjj+vZqVQidX2UKGgGaAloD0MIaCJsePokaECUhpRSlGgVTegDaBZHQKOQ6YLLIPt1fZQoaAZoCWgPQwjTM73EWExEQJSGlFKUaBVNGgFoFkdAo5ERgCwKSnV9lChoBmgJaA9DCGn8witJ5ENAlIaUUpRoFUv8aBZHQKOg2BSUC7t1fZQoaAZoCWgPQwj4TzdQYPFgQJSGlFKUaBVN6ANoFkdAo6Nlyo4uLHV9lChoBmgJaA9DCBlXXByVR2JAlIaUUpRoFU3oA2gWR0Cjo8swtapxdX2UKGgGaAloD0MIWRe30QCKXkCUhpRSlGgVTegDaBZHQKOlR9hqj8F1fZQoaAZoCWgPQwhzEkpfCC1mQJSGlFKUaBVN6ANoFkdAo6r9Ynv2G3V9lChoBmgJaA9DCNujN9xH6WZAlIaUUpRoFU3oA2gWR0CjqxywwCbMdX2UKGgGaAloD0MIe2mKAKeMY0CUhpRSlGgVTegDaBZHQKOrxJVbRnh1fZQoaAZoCWgPQwgdzCbAsJhlQJSGlFKUaBVN6ANoFkdAo60DSRbKR3V9lChoBmgJaA9DCLTpCODmzGJAlIaUUpRoFU3oA2gWR0Cjrc92ovSMdX2UKGgGaAloD0MI+64I/jcBY0CUhpRSlGgVTegDaBZHQKOvf/c32mJ1fZQoaAZoCWgPQwgvwakPpMJjQJSGlFKUaBVN6ANoFkdAo7Jt9a2Wp3V9lChoBmgJaA9DCOcaZmi8SGJAlIaUUpRoFU3oA2gWR0CjsxLeyiVTdX2UKGgGaAloD0MICmZMwRoKZ0CUhpRSlGgVTegDaBZHQKO0AH58BuJ1fZQoaAZoCWgPQwglXTP55ntkQJSGlFKUaBVN6ANoFkdAo7UsgMc6vXV9lChoBmgJaA9DCPRtwVJdz19AlIaUUpRoFU3oA2gWR0CjtUL876pHdX2UKGgGaAloD0MI96+sNCkuY0CUhpRSlGgVTegDaBZHQKO2X4+r2g51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a3646b4bf096658ad5521bdb4fac96368168d725ee1679794238713b05efcfd
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe18ca7a670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe18ca7a700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe18ca7a790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe18ca7a820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe18ca7a8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe18ca7a940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe18ca7a9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe18ca7aa60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe18ca7aaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe18ca7ab80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe18ca7ac10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe18ca7aca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe18ca74810>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673444195993155220,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGCYOb4Ljbo/E+bmvgulYL5Xo5G+16etvQAAAAAAAAAAAMVKvUgLrLrhRj66elGaNb5D0ria2Vg5AACAPwAAgD8ASHW7wwUwupA3ILvc9Ki2OmXzuidoOToAAIA/AACAP3MHsr0pGGi6I14wughlhLdPZhE6/R0SOQAAgD8AAIA/ANajPAqnD7mjbj+5E2VZtICX1rr9mWA4AACAPwAAgD9mbxS9Kdxkukqn2Lu9KoY2OnoIOxp097UAAIA/AACAP2Zt07wCYQ0/61z8PXbeX77ff6E9S/PROgAAAAAAAAAAMykQvT2KabkxIho6xHxXtNEwoLtwqTe5AACAPwAAgD+mOMU9Y7pTP+WX07yJq3q+yS6fPPIXNT0AAAAAAAAAAA2Zsr0pXFe69ge0uAH3STYygQ+7W0PbNwAAgD8AAIA/zStavez+rrs6D4M6HN01PJuDAz0HwR69AACAPwAAgD+a/kC9rnWSugI+z7kz/Ce1huupuo5T8DgAAIA/AACAPya2Mz4MPPg+M2hTvp/BZ76qD788AxPsvAAAAAAAAAAAQGaIPY+afrpak+07izCpN/LVNLsi8TQ2AACAPwAAgD9ghm2+bTFzP4bedz3sQXu+T14Tvupypz0AAAAAAAAAAOZb4L3mojA/+TYtPU1MVr6Itya9n62MPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+nq+ZrnEYECUhpRSlIwBbJRN6AOMAXSUR0Ci5gl23azvdX2UKGgGaAloD0MIAtTUsrX5X0CUhpRSlGgVTegDaBZHQKLnO6pYLb51fZQoaAZoCWgPQwjQnPUpxyljQJSGlFKUaBVN6ANoFkdAourFQwblzXV9lChoBmgJaA9DCA1RhT/DLWZAlIaUUpRoFU3oA2gWR0Ci76e5nUUgdX2UKGgGaAloD0MImurJ/KM6Y0CUhpRSlGgVTegDaBZHQKLvy1mapgl1fZQoaAZoCWgPQwiQatjviQUTQJSGlFKUaBVNJQFoFkdAou/u3pfQbHV9lChoBmgJaA9DCD1kyoegAGJAlIaUUpRoFU3oA2gWR0Ci8Kjdgv12dX2UKGgGaAloD0MIPSzUmmaQY0CUhpRSlGgVTegDaBZHQKLx//jKgZl1fZQoaAZoCWgPQwjYg0nx8R07QJSGlFKUaBVL8WgWR0Ci8s+XJHRUdX2UKGgGaAloD0MI/g+wVu12XkCUhpRSlGgVTegDaBZHQKLzlJ6po9N1fZQoaAZoCWgPQwhwQiECDnFgQJSGlFKUaBVN6ANoFkdAovSRzaK1onV9lChoBmgJaA9DCPlkxXD1YGVAlIaUUpRoFU3oA2gWR0Ci+BUYbbUPdX2UKGgGaAloD0MIG7rZHygCZECUhpRSlGgVTegDaBZHQKL5GFPi1iR1fZQoaAZoCWgPQwjKUuv9xlZjQJSGlFKUaBVN6ANoFkdAowOE4aP0ZnV9lChoBmgJaA9DCAUWwJQBcmVAlIaUUpRoFU3oA2gWR0CjA5zltCRfdX2UKGgGaAloD0MIyXGndLCsX0CUhpRSlGgVTegDaBZHQKMEyTfzjFR1fZQoaAZoCWgPQwgnTYOi+fdhQJSGlFKUaBVN6ANoFkdAowaxjlPrOnV9lChoBmgJaA9DCNvBiH2CM2JAlIaUUpRoFU3oA2gWR0CjCTOeSSvDdX2UKGgGaAloD0MIRIZVvBFfYUCUhpRSlGgVTegDaBZHQKMOs/LTx5N1fZQoaAZoCWgPQwjpDIy8rEtOQJSGlFKUaBVL92gWR0CjEEowdsBRdX2UKGgGaAloD0MIM6g2OJFuZUCUhpRSlGgVTegDaBZHQKMWV9itq591fZQoaAZoCWgPQwhbP/1nTadmQJSGlFKUaBVN6ANoFkdAoxZ4aFVT73V9lChoBmgJaA9DCDJ3LSGfSWRAlIaUUpRoFU3oA2gWR0CjFpc76pHadX2UKGgGaAloD0MIN1DgnXwUZECUhpRSlGgVTegDaBZHQKMXNm7J4jd1fZQoaAZoCWgPQwh8KxITVAVnQJSGlFKUaBVN6ANoFkdAoxhqkoF3ZHV9lChoBmgJaA9DCLfsEP+w3WRAlIaUUpRoFU3oA2gWR0CjGRxDLKV6dX2UKGgGaAloD0MIZ9R8lfy3Y0CUhpRSlGgVTegDaBZHQKMZyiV0Lc91fZQoaAZoCWgPQwhjfQOTmwxnQJSGlFKUaBVN6ANoFkdAoxqr/Ot4iXV9lChoBmgJaA9DCKOVe4FZtmNAlIaUUpRoFU3oA2gWR0CjHbtdzGPxdX2UKGgGaAloD0MI0JhJ1IuYYECUhpRSlGgVTegDaBZHQKMep+GXXy11fZQoaAZoCWgPQwiRC87gbxdkQJSGlFKUaBVN6ANoFkdAoykmZ7Xxv3V9lChoBmgJaA9DCL0aoDTUAmNAlIaUUpRoFU3oA2gWR0CjKTzrmhdudX2UKGgGaAloD0MIoBhZMkfdZECUhpRSlGgVTegDaBZHQKMqeDuBtk51fZQoaAZoCWgPQwiBfAkVHFldQJSGlFKUaBVN6ANoFkdAoyxcRUWEb3V9lChoBmgJaA9DCD24O2u33GNAlIaUUpRoFU3oA2gWR0CjNaj/2kBTdX2UKGgGaAloD0MIkxgEVo7tYUCUhpRSlGgVTegDaBZHQKM3buLrHEN1fZQoaAZoCWgPQwi46jpUU61iQJSGlFKUaBVN6ANoFkdAoz2iBRQ793V9lChoBmgJaA9DCJmghm/hkGNAlIaUUpRoFU3oA2gWR0CjPcC7kGRndX2UKGgGaAloD0MI7lpCPuiDY0CUhpRSlGgVTegDaBZHQKM94gA6uGN1fZQoaAZoCWgPQwhDq5MzFH1kQJSGlFKUaBVN6ANoFkdAoz53kHUtqnV9lChoBmgJaA9DCMPy59uCemdAlIaUUpRoFU3oA2gWR0CjP5PUjLSvdX2UKGgGaAloD0MIH4DUJk6OZkCUhpRSlGgVTegDaBZHQKNARNdqtYB1fZQoaAZoCWgPQwgIlE25QollQJSGlFKUaBVN6ANoFkdAo0DckfLcK3V9lChoBmgJaA9DCIy9F1+0/WBAlIaUUpRoFU3oA2gWR0CjQa/mknCwdX2UKGgGaAloD0MI860P640MZUCUhpRSlGgVTegDaBZHQKNEmoc7yQR1fZQoaAZoCWgPQwiRCmMLwVJhQJSGlFKUaBVN6ANoFkdAo0V6w2VE/nV9lChoBmgJaA9DCCAMPPcey1tAlIaUUpRoFU3oA2gWR0CjRrYOc2BKdX2UKGgGaAloD0MIQ67UsyD9Y0CUhpRSlGgVTegDaBZHQKNGy7Bfrrx1fZQoaAZoCWgPQwg0MPKyJlJmQJSGlFKUaBVN6ANoFkdAo1Ee43FUAHV9lChoBmgJaA9DCN/A5EYRH2JAlIaUUpRoFU3oA2gWR0CjUuH9WIXTdX2UKGgGaAloD0MIbhYvFgaAYkCUhpRSlGgVTegDaBZHQKNa4CPp6hR1fZQoaAZoCWgPQwilhjYAG4dkQJSGlFKUaBVN6ANoFkdAo1x3Sx7iQ3V9lChoBmgJaA9DCLfT1ohgIGJAlIaUUpRoFU3oA2gWR0CjYlb1h9b5dX2UKGgGaAloD0MIfH4YITxFaECUhpRSlGgVTegDaBZHQKNieC5Etul1fZQoaAZoCWgPQwi3XWiu07NiQJSGlFKUaBVN6ANoFkdAo2KWwA2hqXV9lChoBmgJaA9DCPGbwkoFZ19AlIaUUpRoFU3oA2gWR0CjYzaYeDFqdX2UKGgGaAloD0MIfQT+8PM+Y0CUhpRSlGgVTegDaBZHQKNkS18b70p1fZQoaAZoCWgPQwgkm6vmuXxlQJSGlFKUaBVN6ANoFkdAo2TypFTef3V9lChoBmgJaA9DCP0tAfgniGhAlIaUUpRoFU3oA2gWR0CjZYmjCYTkdX2UKGgGaAloD0MI1esWgbELZUCUhpRSlGgVTegDaBZHQKNmWzKs+3Z1fZQoaAZoCWgPQwjlX8sr1xxTQJSGlFKUaBVL/mgWR0CjaKKUNayKdX2UKGgGaAloD0MI7Pma5bI4XUCUhpRSlGgVTegDaBZHQKNpJci4axZ1fZQoaAZoCWgPQwgEOpM2VSRhQJSGlFKUaBVN6ANoFkdAo2n1Z1V5r3V9lChoBmgJaA9DCF5Ih4ewkGNAlIaUUpRoFU3oA2gWR0Cjaw1s1sLwdX2UKGgGaAloD0MIbLJGPUTJYkCUhpRSlGgVTegDaBZHQKNrIKneizt1fZQoaAZoCWgPQwhNSGsMutNlQJSGlFKUaBVN6ANoFkdAo3WJYFJQL3V9lChoBmgJaA9DCCV4QxqVj2BAlIaUUpRoFU3oA2gWR0Cjdz33pOerdX2UKGgGaAloD0MIqP3WTpSYQ0CUhpRSlGgVTRABaBZHQKN/KAQQL/l1fZQoaAZoCWgPQwjsiEM2ECJlQJSGlFKUaBVN6ANoFkdAo3+O0VrRB3V9lChoBmgJaA9DCP1s5LopqmNAlIaUUpRoFU3oA2gWR0CjgR/3FkxzdX2UKGgGaAloD0MIcVRuopYhaECUhpRSlGgVTegDaBZHQKOG4YpDu0F1fZQoaAZoCWgPQwjfUPhsnQ5kQJSGlFKUaBVN6ANoFkdAo4b+5hBqsXV9lChoBmgJaA9DCAsIrYevEGZAlIaUUpRoFU3oA2gWR0Cjh5gP3BYWdX2UKGgGaAloD0MI0VlmEQr/YECUhpRSlGgVTegDaBZHQKOIvNSqEOB1fZQoaAZoCWgPQwhF1hpK7aZjQJSGlFKUaBVN6ANoFkdAo4lxUgjhUHV9lChoBmgJaA9DCLzplh3iyF1AlIaUUpRoFU3oA2gWR0CjihN70Fr3dX2UKGgGaAloD0MI31LOF/sLYkCUhpRSlGgVTegDaBZHQKOK8UJOWSl1fZQoaAZoCWgPQwhrgxPRL2xjQJSGlFKUaBVN6ANoFkdAo41dgfEGaHV9lChoBmgJaA9DCA+3Q8NigltAlIaUUpRoFU3oA2gWR0CjjeTxgAp8dX2UKGgGaAloD0MIBDdStkguaECUhpRSlGgVTegDaBZHQKOOxR9gF5h1fZQoaAZoCWgPQwihnj4C/+ZgQJSGlFKUaBVN6ANoFkdAo4/ZMURFqnV9lChoBmgJaA9DCCgn2lXI0mFAlIaUUpRoFU3oA2gWR0Cjj+vZqVQidX2UKGgGaAloD0MIaCJsePokaECUhpRSlGgVTegDaBZHQKOQ6YLLIPt1fZQoaAZoCWgPQwjTM73EWExEQJSGlFKUaBVNGgFoFkdAo5ERgCwKSnV9lChoBmgJaA9DCGn8witJ5ENAlIaUUpRoFUv8aBZHQKOg2BSUC7t1fZQoaAZoCWgPQwj4TzdQYPFgQJSGlFKUaBVN6ANoFkdAo6Nlyo4uLHV9lChoBmgJaA9DCBlXXByVR2JAlIaUUpRoFU3oA2gWR0Cjo8swtapxdX2UKGgGaAloD0MIWRe30QCKXkCUhpRSlGgVTegDaBZHQKOlR9hqj8F1fZQoaAZoCWgPQwhzEkpfCC1mQJSGlFKUaBVN6ANoFkdAo6r9Ynv2G3V9lChoBmgJaA9DCNujN9xH6WZAlIaUUpRoFU3oA2gWR0CjqxywwCbMdX2UKGgGaAloD0MIe2mKAKeMY0CUhpRSlGgVTegDaBZHQKOrxJVbRnh1fZQoaAZoCWgPQwgdzCbAsJhlQJSGlFKUaBVN6ANoFkdAo60DSRbKR3V9lChoBmgJaA9DCLTpCODmzGJAlIaUUpRoFU3oA2gWR0Cjrc92ovSMdX2UKGgGaAloD0MI+64I/jcBY0CUhpRSlGgVTegDaBZHQKOvf/c32mJ1fZQoaAZoCWgPQwgvwakPpMJjQJSGlFKUaBVN6ANoFkdAo7Jt9a2Wp3V9lChoBmgJaA9DCOcaZmi8SGJAlIaUUpRoFU3oA2gWR0CjsxLeyiVTdX2UKGgGaAloD0MICmZMwRoKZ0CUhpRSlGgVTegDaBZHQKO0AH58BuJ1fZQoaAZoCWgPQwglXTP55ntkQJSGlFKUaBVN6ANoFkdAo7UsgMc6vXV9lChoBmgJaA9DCPRtwVJdz19AlIaUUpRoFU3oA2gWR0CjtUL876pHdX2UKGgGaAloD0MI96+sNCkuY0CUhpRSlGgVTegDaBZHQKO2X4+r2g51ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed56b5c2a705bee4cb445dea52bd392b26bcffe25f1d1c12435effd6a603b557
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87d2681a1fbd5e44ffd3979f0340e6cab05cb57c6a786457ad7c130720fb4d20
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (248 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.90370400467486, "std_reward": 20.570238637841083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T14:07:58.322048"}