Ahmad Alismail commited on
Commit
c3194f2
1 Parent(s): 65ff03f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -3
README.md CHANGED
@@ -30,8 +30,37 @@ TODO: Add your code
30
 
31
 
32
  ```python
33
- from stable_baselines3 import ...
34
- from huggingface_sb3 import load_from_hub
 
 
35
 
36
- ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ```
 
30
 
31
 
32
  ```python
33
+ from huggingface_hub import notebook_login
34
+ from stable_baselines3 import PPO
35
+ from stable_baselines3.common.evaluation import evaluate_policy
36
+ from stable_baselines3.common.env_util import make_vec_env
37
 
38
+ # Create the environment
39
+ env = make_vec_env('LunarLander-v2', n_envs=16)
40
+
41
+ model = PPO(
42
+ policy = 'MlpPolicy', # The policy to be optimized
43
+ env = env, # The environment in which the agent will act
44
+ n_steps = 2048, # The number of steps to run for each environment per update
45
+ batch_size = 64, # Minibatch size
46
+ n_epochs = 10, # Number of epoch when optimizing the surrogate loss
47
+ gamma = 0.999, # discount factor used to weigh future rewards in the total reward calculation
48
+ gae_lambda = 0.98, # parameter used in the Generalized Advantage Estimation (GAE) algorithm
49
+ ent_coef = 0.01, # Entropy coefficient for the loss calculation
50
+ verbose=0) # Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for debug messages
51
+
52
+ # Train it for 1,500,000 timesteps
53
+ model.learn(total_timesteps=1500000, progress_bar=True)
54
+ # Specify file name for model and save the model to file
55
+ model_name = "ppo-LunarLander-v2"
56
+ model.save(model_name)
57
+
58
+ # Create a new environment for evaluation
59
+ eval_env = gym.make("LunarLander-v2")
60
+
61
+ # Evaluate the model with 10 evaluation episodes and deterministic=True
62
+ mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
63
+
64
+ # Print the results
65
+ print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
66
  ```