--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.81 +/- 20.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from huggingface_hub import notebook_login from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.env_util import make_vec_env # Create the environment env = make_vec_env('LunarLander-v2', n_envs=16) model = PPO( policy = 'MlpPolicy', # The policy to be optimized env = env, # The environment in which the agent will act n_steps = 2048, # The number of steps to run for each environment per update batch_size = 64, # Minibatch size n_epochs = 10, # Number of epoch when optimizing the surrogate loss gamma = 0.999, # discount factor used to weigh future rewards in the total reward calculation gae_lambda = 0.98, # parameter used in the Generalized Advantage Estimation (GAE) algorithm ent_coef = 0.01, # Entropy coefficient for the loss calculation verbose=0) # Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for debug messages # Train it for 1,500,000 timesteps model.learn(total_timesteps=1500000, progress_bar=True) # Specify file name for model and save the model to file model_name = "ppo-LunarLander-v2" model.save(model_name) # Create a new environment for evaluation eval_env = gym.make("LunarLander-v2") # Evaluate the model with 10 evaluation episodes and deterministic=True mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) # Print the results print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ```