File size: 2,163 Bytes
9d56527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Psoriasis-Project-Aug-M2-beit-base-patch16-224-pt22k-ft22k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Psoriasis-Project-Aug-M2-beit-base-patch16-224-pt22k-ft22k
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0042
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1065 | 0.99 | 36 | 0.3867 | 0.9167 |
| 0.2495 | 1.99 | 72 | 0.1087 | 0.9583 |
| 0.1026 | 2.98 | 108 | 0.0239 | 1.0 |
| 0.039 | 4.0 | 145 | 0.0605 | 0.9583 |
| 0.0188 | 4.99 | 181 | 0.1663 | 0.9375 |
| 0.0165 | 5.99 | 217 | 0.0047 | 1.0 |
| 0.0047 | 6.98 | 253 | 0.0028 | 1.0 |
| 0.005 | 8.0 | 290 | 0.0043 | 1.0 |
| 0.0022 | 8.99 | 326 | 0.0061 | 1.0 |
| 0.0015 | 9.93 | 360 | 0.0042 | 1.0 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|