--- base_model: microsoft/beit-large-patch16-224-pt22k-ft22k tags: - generated_from_trainer metrics: - accuracy model-index: - name: Train-Augmentation-beit-large results: [] --- # Train-Augmentation-beit-large This model is a fine-tuned version of [microsoft/beit-large-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-large-patch16-224-pt22k-ft22k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8592 - Accuracy: 0.8182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0993 | 0.99 | 93 | 0.6675 | 0.8340 | | 0.0492 | 2.0 | 187 | 0.8597 | 0.8379 | | 0.0134 | 2.99 | 280 | 0.7961 | 0.8024 | | 0.0016 | 4.0 | 374 | 0.7594 | 0.8340 | | 0.0004 | 4.97 | 465 | 0.8592 | 0.8182 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.15.2