--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer metrics: - accuracy model-index: - name: Train-Test-Augmentation-V4-beit-base results: [] --- # Train-Test-Augmentation-V4-beit-base This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4701 - Accuracy: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6584 | 1.0 | 55 | 0.6744 | 0.7946 | | 0.2762 | 2.0 | 110 | 0.5429 | 0.8234 | | 0.1144 | 3.0 | 165 | 0.5259 | 0.8336 | | 0.0487 | 4.0 | 220 | 0.5111 | 0.8404 | | 0.0218 | 5.0 | 275 | 0.4701 | 0.8557 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.15.2