Update pipeline.py
Browse files- pipeline.py +6 -6
pipeline.py
CHANGED
@@ -72,13 +72,13 @@ class OkkhorDiffusionPipeline(DiffusionPipeline):
|
|
72 |
|
73 |
# set step values
|
74 |
self.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
model_output = self.unet(image, t,class_labels=self.embedding).sample
|
79 |
-
|
80 |
-
# 2. compute previous image: x_t -> x_t-1
|
81 |
-
image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
|
82 |
|
83 |
image = (image / 2 + 0.5).clamp(0, 1)
|
84 |
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
72 |
|
73 |
# set step values
|
74 |
self.scheduler.set_timesteps(num_inference_steps)
|
75 |
+
with torch.no_grad():
|
76 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
77 |
+
# 1. predict noise model_output
|
78 |
+
model_output = self.unet(image, t,class_labels=self.embedding).sample
|
79 |
|
80 |
+
# 2. compute previous image: x_t -> x_t-1
|
81 |
+
image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
|
|
|
|
|
|
|
|
|
82 |
|
83 |
image = (image / 2 + 0.5).clamp(0, 1)
|
84 |
image = image.cpu().permute(0, 2, 3, 1).numpy()
|