File size: 4,622 Bytes
987eb03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: llama_3_translator_v3
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: translation-dataset-v3-train.hf
type: alpaca
train_on_split: train
test_datasets:
- path: translation-dataset-v3-test.hf
type: alpaca
split: train
dataset_prepared_path: ./last_run_prepared
output_dir: ./llama_3_translator
hub_model_id: ahmedsamirio/llama_3_translator_v3
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
adapter: lora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: en_eg_translator
wandb_entity: ahmedsamirio
wandb_name: llama_3_en_eg_translator_v3
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ahmedsamirio/en_eg_translator/runs/hwzxxt0r)
# Egyptian Arabic Translator Llama-3 8B
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the [ahmedsamirio/oasst2-9k-translation](https://huggingface.co/datasets/ahmedsamirio/oasst2-9k-translation) dataset.
## Model description
This model is an attempt to create a small translation model from English to Egyptian Arabic.
## Intended uses & limitations
- Translating instruction finetuning and text generation datasets
## Training and evaluation data
[ahmedsamirio/oasst2-9k-translation](https://huggingface.co/datasets/ahmedsamirio/oasst2-9k-translation)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9661 | 0.0008 | 1 | 1.3816 |
| 0.5611 | 0.1002 | 123 | 0.9894 |
| 0.6739 | 0.2004 | 246 | 0.8820 |
| 0.5168 | 0.3006 | 369 | 0.8229 |
| 0.5582 | 0.4008 | 492 | 0.7931 |
| 0.552 | 0.5010 | 615 | 0.7814 |
| 0.5129 | 0.6012 | 738 | 0.7591 |
| 0.5887 | 0.7014 | 861 | 0.7444 |
| 0.6359 | 0.8016 | 984 | 0.7293 |
| 0.613 | 0.9018 | 1107 | 0.7179 |
| 0.5671 | 1.0020 | 1230 | 0.7126 |
| 0.4956 | 1.0847 | 1353 | 0.7034 |
| 0.5055 | 1.1849 | 1476 | 0.6980 |
| 0.4863 | 1.2851 | 1599 | 0.6877 |
| 0.4538 | 1.3853 | 1722 | 0.6845 |
| 0.4362 | 1.4855 | 1845 | 0.6803 |
| 0.4291 | 1.5857 | 1968 | 0.6834 |
| 0.6208 | 1.6859 | 2091 | 0.6830 |
| 0.582 | 1.7862 | 2214 | 0.6781 |
| 0.5001 | 1.8864 | 2337 | 0.6798 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |