aho-tai commited on
Commit
362a425
·
verified ·
1 Parent(s): efdcaf1

Upload VisionPixtralEncoderDecoder

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +61 -0
  3. generation_config.json +9 -0
  4. model.safetensors +3 -0
  5. modeling.py +261 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "VisionPixtralEncoderDecoder"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModel": "modeling.VisionPixtralEncoderDecoder"
7
+ },
8
+ "decoder": {
9
+ "_attn_implementation_autoset": true,
10
+ "activation_dropout": 0.0,
11
+ "activation_function": "relu",
12
+ "add_cross_attention": true,
13
+ "attention_dropout": 0.0,
14
+ "classifier_dropout": 0.0,
15
+ "cross_attention_hidden_size": 1024,
16
+ "d_model": 1024,
17
+ "decoder_attention_heads": 16,
18
+ "decoder_ffn_dim": 4096,
19
+ "decoder_layerdrop": 0.0,
20
+ "decoder_layers": 12,
21
+ "dropout": 0.1,
22
+ "init_std": 0.02,
23
+ "is_decoder": true,
24
+ "layernorm_embedding": false,
25
+ "max_position_embeddings": 1024,
26
+ "model_type": "trocr",
27
+ "scale_embedding": true,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float32",
30
+ "use_cache": false,
31
+ "use_learned_position_embeddings": false,
32
+ "vocab_size": 50265
33
+ },
34
+ "encoder": {
35
+ "_attn_implementation_autoset": true,
36
+ "architectures": [
37
+ "PixtralVisionModelBatch"
38
+ ],
39
+ "attention_dropout": 0.0,
40
+ "head_dim": 64,
41
+ "hidden_act": "silu",
42
+ "hidden_size": 1024,
43
+ "image_size": 1024,
44
+ "initializer_range": 0.02,
45
+ "intermediate_size": 4096,
46
+ "is_composition": true,
47
+ "model_type": "pixtral_batch",
48
+ "num_attention_heads": 16,
49
+ "num_channels": 3,
50
+ "num_hidden_layers": 24,
51
+ "patch_size": 16,
52
+ "rope_theta": 10000.0,
53
+ "tie_word_embeddings": false,
54
+ "torch_dtype": "float32"
55
+ },
56
+ "is_encoder_decoder": true,
57
+ "model_type": "vision-encoder-decoder",
58
+ "tie_word_embeddings": false,
59
+ "torch_dtype": "float32",
60
+ "transformers_version": "4.51.3"
61
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "decoder_start_token_id": 2,
5
+ "eos_token_id": 2,
6
+ "pad_token_id": 1,
7
+ "transformers_version": "4.51.3",
8
+ "use_cache": false
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e5153c6c3b48b4b6b75b5bbf7f2b0f0e413cced9f0d213525f23f6323f1c3dd
3
+ size 2832038364
modeling.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from typing import Optional, Union, Tuple
5
+
6
+ from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import (
7
+ shift_tokens_right,
8
+ VisionEncoderDecoderModel
9
+ )
10
+ from transformers.modeling_outputs import Seq2SeqLMOutput
11
+ from transformers import PreTrainedModel
12
+ from transformers.models.pixtral.modeling_pixtral import apply_rotary_pos_emb, PixtralAttention, PixtralVisionModel
13
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
14
+ from transformers.modeling_outputs import BaseModelOutput
15
+
16
+ from pixtral_encoder_decoder.config import PixtralVisionModelBatchConfig, VisionPixtralEncoderDecoderConfig
17
+
18
+
19
+ def position_ids_in_meshgrid_batch(patch_embeds, max_width):
20
+ """get the position ids of the batch. """
21
+ # unlike flattened patch_embeds, we use the padded ones, which mean each entry has the same w/h and thus the same ids
22
+ height, width = patch_embeds.shape[-2:]
23
+ mesh = torch.meshgrid(torch.arange(height), torch.arange(width), indexing="ij")
24
+ h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1)
25
+ ids = h_grid * max_width + v_grid
26
+ # expand ids to batch size
27
+ ids = ids.reshape(1, -1).repeat(patch_embeds.shape[0], 1)
28
+ return ids
29
+
30
+
31
+ def create_attention_mask_batch(w, h, image_sizes, patch_size):
32
+ def foo(i, j):
33
+ return ((torch.arange(h).unsqueeze(1) < i) & (torch.arange(w).unsqueeze(0) < j)).float()
34
+
35
+ mask = [foo(size[0] // patch_size, size[1] // patch_size) for size in image_sizes]
36
+ return torch.stack(mask, dim=0)
37
+
38
+
39
+ def pixtral_attention_fix_forward(
40
+ self,
41
+ hidden_states: torch.Tensor,
42
+ attention_mask: Optional[torch.Tensor] = None,
43
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
44
+ output_attentions: Optional[bool] = False,
45
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
46
+ """Input shape: Batch x Time x Channel"""
47
+
48
+ batch_size, patches, _ = hidden_states.size()
49
+
50
+ query_states = self.q_proj(hidden_states)
51
+ key_states = self.k_proj(hidden_states)
52
+ value_states = self.v_proj(hidden_states)
53
+
54
+ query_states = query_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
55
+ key_states = key_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
56
+ value_states = value_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
57
+
58
+ cos, sin = position_embeddings
59
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=1)
60
+
61
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
62
+
63
+ if attention_mask is not None:
64
+ attn_weights = attn_weights + attention_mask
65
+
66
+ # upcast attention to fp32
67
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
68
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
69
+ attn_output = torch.matmul(attn_weights, value_states)
70
+
71
+ attn_output = attn_output.transpose(1, 2).contiguous()
72
+ attn_output = attn_output.reshape(batch_size, patches, -1)
73
+
74
+ attn_output = self.o_proj(attn_output)
75
+
76
+ return attn_output, attn_weights
77
+
78
+
79
+ # monkey patch a fix for unsqueeze dim for position embedds (since our input is batched and the old one is not)
80
+ PixtralAttention.forward = pixtral_attention_fix_forward
81
+
82
+
83
+ class PixtralVisionModelBatch(PixtralVisionModel):
84
+ config_class = PixtralVisionModelBatchConfig
85
+
86
+ def __init__(self, config):
87
+ super().__init__(config)
88
+
89
+ def forward(
90
+ self,
91
+ pixel_values: torch.Tensor,
92
+ image_sizes: Optional[torch.Tensor] = None,
93
+ attention_mask: Optional[torch.Tensor] = None,
94
+ output_hidden_states: Optional[bool] = None,
95
+ output_attentions: Optional[bool] = None,
96
+ return_dict: Optional[bool] = None,
97
+ *args,
98
+ **kwargs,
99
+ ) -> Union[Tuple, BaseModelOutput]:
100
+ """
101
+ Returns:
102
+ pixel_values: tensor of token features for
103
+ all tokens of all images of shape (N_toks, D)
104
+ """
105
+ if attention_mask is None and image_sizes is None:
106
+ raise ValueError("Either `attention_mask` or `image_sizes` must be defined")
107
+ # pass images through initial convolution independently
108
+ patch_embeds = self.patch_conv(pixel_values)
109
+ # build attention mask based on image_sizes if not provided
110
+ if attention_mask is None:
111
+ h, w = patch_embeds.shape[-2:]
112
+ attention_mask = create_attention_mask_batch(w, h, image_sizes, self.patch_size).to(patch_embeds.device)
113
+ attention_mask = attention_mask.flatten(start_dim=-2)
114
+
115
+ # positional embeddings
116
+ position_ids = position_ids_in_meshgrid_batch(
117
+ patch_embeds, max_width=self.config.image_size // self.config.patch_size
118
+ )
119
+ position_embeddings = self.patch_positional_embedding(patch_embeds, position_ids)
120
+
121
+ # flatten patch_embeds
122
+ # seq_len = (h*w); hidden x seq_len -> seq_len x hidden.
123
+ patch_embeds = patch_embeds.flatten(start_dim=-2).transpose(-1, -2)
124
+
125
+ attention_mask = _prepare_4d_attention_mask(attention_mask, torch.float)
126
+
127
+ patch_embeds = self.ln_pre(patch_embeds)
128
+
129
+ out = self.transformer(
130
+ patch_embeds,
131
+ attention_mask=attention_mask,
132
+ position_embeddings=position_embeddings,
133
+ output_hidden_states=output_hidden_states,
134
+ output_attentions=output_attentions,
135
+ return_dict=return_dict,
136
+ )
137
+ return out
138
+
139
+
140
+ class VisionPixtralEncoderDecoder(VisionEncoderDecoderModel):
141
+ config_class = VisionPixtralEncoderDecoderConfig
142
+
143
+ def __init__(self, config,
144
+ encoder: Optional[PixtralVisionModelBatch] = None,
145
+ decoder: Optional[PreTrainedModel] = None):
146
+ super().__init__(config, encoder, decoder)
147
+
148
+ def forward(
149
+ self,
150
+ pixel_values: Optional[torch.Tensor] = None,
151
+ image_sizes: Optional[torch.Tensor] = None,
152
+ encoder_attention_mask: Optional[torch.Tensor] = None,
153
+ decoder_input_ids: Optional[torch.LongTensor] = None,
154
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
155
+ encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
156
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
157
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
158
+ labels: Optional[torch.LongTensor] = None,
159
+ use_cache: Optional[bool] = None,
160
+ output_attentions: Optional[bool] = None,
161
+ output_hidden_states: Optional[bool] = None,
162
+ return_dict: Optional[bool] = None,
163
+ **kwargs,
164
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
165
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
166
+
167
+ # num_items_in_batch is only needed for loss computation
168
+ num_items_in_batch = kwargs.pop("num_items_in_batch", None)
169
+
170
+ kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
171
+
172
+ kwargs_decoder = {
173
+ argument[len("decoder_"):]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
174
+ }
175
+
176
+ if encoder_outputs is None:
177
+ if pixel_values is None:
178
+ raise ValueError("You have to specify pixel_values")
179
+ if encoder_attention_mask is None and image_sizes is None:
180
+ raise ValueError("Either `encoder_attention_mask` or `image_sizes` must be defined")
181
+ if encoder_attention_mask is None:
182
+ h, w = pixel_values.shape[-2:]
183
+ h = h // self.encoder.patch_size # simulate convolution to get num_patches
184
+ w = w // self.encoder.patch_size # simulate convolution to get num_patches
185
+ encoder_attention_mask = create_attention_mask_batch(w, h, image_sizes, self.encoder.patch_size)
186
+ encoder_attention_mask = encoder_attention_mask.to(pixel_values.device)
187
+ encoder_attention_mask = encoder_attention_mask.flatten(start_dim=-2)
188
+
189
+ encoder_outputs = self.encoder(
190
+ pixel_values=pixel_values,
191
+ image_sizes=image_sizes,
192
+ attention_mask=encoder_attention_mask,
193
+ output_attentions=output_attentions,
194
+ output_hidden_states=output_hidden_states,
195
+ return_dict=return_dict,
196
+ **kwargs_encoder,
197
+ )
198
+ elif isinstance(encoder_outputs, tuple):
199
+ encoder_outputs = BaseModelOutput(*encoder_outputs)
200
+
201
+ encoder_hidden_states = encoder_outputs[0]
202
+
203
+ # optionally project encoder_hidden_states
204
+ if (
205
+ self.encoder.config.hidden_size != self.decoder.config.hidden_size
206
+ and self.decoder.config.cross_attention_hidden_size is None
207
+ ):
208
+ encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
209
+
210
+ # else:
211
+ # encoder_attention_mask = None
212
+
213
+ if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
214
+ decoder_input_ids = shift_tokens_right(
215
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
216
+ )
217
+
218
+ # Decode
219
+ decoder_outputs = self.decoder(
220
+ input_ids=decoder_input_ids,
221
+ attention_mask=decoder_attention_mask,
222
+ encoder_hidden_states=encoder_hidden_states,
223
+ encoder_attention_mask=encoder_attention_mask,
224
+ inputs_embeds=decoder_inputs_embeds,
225
+ output_attentions=output_attentions,
226
+ output_hidden_states=output_hidden_states,
227
+ use_cache=use_cache,
228
+ past_key_values=past_key_values,
229
+ return_dict=return_dict,
230
+ **kwargs_decoder,
231
+ )
232
+
233
+ # Compute loss independent from decoder (as some shift the logits inside them)
234
+ loss = None
235
+ if labels is not None:
236
+ logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
237
+
238
+ loss = self.loss_function(
239
+ logits=logits,
240
+ labels=labels,
241
+ vocab_size=self.decoder.config.vocab_size,
242
+ num_items_in_batch=num_items_in_batch,
243
+ )
244
+
245
+ if not return_dict:
246
+ if loss is not None:
247
+ return (loss,) + decoder_outputs + encoder_outputs
248
+ else:
249
+ return decoder_outputs + encoder_outputs
250
+
251
+ return Seq2SeqLMOutput(
252
+ loss=loss,
253
+ logits=decoder_outputs.logits,
254
+ past_key_values=decoder_outputs.past_key_values,
255
+ decoder_hidden_states=decoder_outputs.hidden_states,
256
+ decoder_attentions=decoder_outputs.attentions,
257
+ cross_attentions=decoder_outputs.cross_attentions,
258
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
259
+ encoder_hidden_states=encoder_outputs.hidden_states,
260
+ encoder_attentions=encoder_outputs.attentions,
261
+ )