ai-forever commited on
Commit
4b76968
·
verified ·
1 Parent(s): 93da8f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -10
README.md CHANGED
@@ -7,39 +7,67 @@ tags:
7
  thumbnail: "https://github.com/ai-forever/KandiSuperRes/"
8
  ---
9
 
10
- # KandiSuperRes - diffusion model for 4K super resolution
11
 
12
- [Habr Post](https://habr.com/ru/companies/sberbank/articles/775590/) | [Github](https://github.com/ai-forever/KandiSuperRes/) | [Telegram-bot](https://t.me/kandinsky21_bot) | [Technical Report](https://arxiv.org/pdf/2312.03511.pdf)| [Our text-to-image model](https://github.com/ai-forever/Kandinsky-3/tree/main)
13
 
14
- ![](title.png)
 
 
15
 
16
- ## Description
17
 
18
- KandiSuperRes is an open-source diffusion model for x4 super resolution. This model is based on the [Kandinsky 3.0](https://github.com/ai-forever/Kandinsky-3/tree/main) architecture with some modifications. For generation in 4K, the [MultiDiffusion](https://arxiv.org/pdf/2302.08113.pdf) algorithm was used, which allows to generate panoramic images. For more information: details of architecture and training, example of generations check out our [Habr post]().
19
 
20
- ## Installing
21
 
22
  To install repo first one need to create conda environment:
23
 
24
  ```
25
- conda create -n kandisuperres -y python=3.8;
 
 
26
  source activate kandisuperres;
27
  pip install -r requirements.txt;
28
  ```
29
 
30
- ## How to use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ```python
33
  from KandiSuperRes import get_SR_pipeline
34
  from PIL import Image
35
 
36
- sr_pipe = get_SR_pipeline(device='cuda', fp16=True)
37
 
38
  lr_image = Image.open('')
39
  sr_image = sr_pipe(lr_image)
40
  ```
41
 
42
- ## Authors
43
  + Anastasia Maltseva [Github](https://github.com/NastyaMittseva)
44
  + Vladimir Arkhipkin: [Github](https://github.com/oriBetelgeuse)
45
  + Andrey Kuznetsov: [Github](https://github.com/kuznetsoffandrey), [Blog](https://t.me/complete_ai)
 
7
  thumbnail: "https://github.com/ai-forever/KandiSuperRes/"
8
  ---
9
 
10
+ # KandiSuperRes - diffusion model for super resolution
11
 
12
+ [KandiSuperRes Flash Post](https://habr.com/ru/companies/sberbank/articles/805337/) | [KandiSuperRes Post](https://habr.com/ru/companies/sberbank/articles/805337/) | [![Hugging Face Spaces](https://img.shields.io/badge/🤗-Huggingface-yello.svg)](https://huggingface.co/ai-forever/KandiSuperRes/) | [Telegram-bot](https://t.me/kandinsky21_bot) | [Our text-to-image model](https://github.com/ai-forever/Kandinsky-3/tree/main)
13
 
14
+ ## KandiSuperRes Flash
15
+
16
+ ![](title_flash.gif)
17
 
18
+ ### Description
19
 
20
+ KandiSuperRes Flash is a new version of the diffusion model for super resolution. This model includes a distilled version of the KandiSuperRes model and a distilled model [Kandinsky 3.0 Flash](https://github.com/ai-forever/Kandinsky-3/tree/main). KandiSuperRes Flash not only improves image clarity, but also corrects artifacts, draws details, improves image aesthetics. And one of the most important advantages is the ability to use the model in the "infinite super resolution" mode. For more information: details of architecture and training, example of generations check out our [Habr post](https://habr.com/ru/companies/sberbank/articles/805337/).
21
 
22
+ ### Installing
23
 
24
  To install repo first one need to create conda environment:
25
 
26
  ```
27
+ git clone https://github.com/ai-forever/KandiSuperRes.git
28
+ cd KandiSuperRes
29
+ conda create -n kandisuperres -y python=3.12;
30
  source activate kandisuperres;
31
  pip install -r requirements.txt;
32
  ```
33
 
34
+ ### How to use
35
+
36
+ Check our jupyter notebook `KandiSuperRes.ipynb` with example.
37
+
38
+ ```python
39
+ from KandiSuperRes import get_SR_pipeline
40
+ from PIL import Image
41
+
42
+ sr_pipe = get_SR_pipeline(device='cuda', fp16=True, flash=True, scale=2)
43
+
44
+ lr_image = Image.open('')
45
+ sr_image = sr_pipe(lr_image)
46
+ ```
47
+
48
+ ## KandiSuperRes
49
+
50
+ ![](title.png)
51
+
52
+ ### Description
53
+
54
+ KandiSuperRes is an open-source diffusion model for x4 super resolution. This model is based on the [Kandinsky 3.0](https://github.com/ai-forever/Kandinsky-3/tree/main) architecture with some modifications. For generation in 4K, the [MultiDiffusion](https://arxiv.org/pdf/2302.08113.pdf) algorithm was used, which allows to generate panoramic images. For more information: details of architecture and training, example of generations check out our [Habr post](https://habr.com/ru/companies/sberbank/articles/805337/).
55
+
56
+ ### How to use
57
+
58
+ Check our jupyter notebook `KandiSuperRes.ipynb` with example.
59
 
60
  ```python
61
  from KandiSuperRes import get_SR_pipeline
62
  from PIL import Image
63
 
64
+ sr_pipe = get_SR_pipeline(device='cuda', fp16=True, flash=False, scale=4)
65
 
66
  lr_image = Image.open('')
67
  sr_image = sr_pipe(lr_image)
68
  ```
69
 
70
+ ### Authors
71
  + Anastasia Maltseva [Github](https://github.com/NastyaMittseva)
72
  + Vladimir Arkhipkin: [Github](https://github.com/oriBetelgeuse)
73
  + Andrey Kuznetsov: [Github](https://github.com/kuznetsoffandrey), [Blog](https://t.me/complete_ai)