ai-forever
commited on
Commit
•
da6ad08
1
Parent(s):
49cf776
Update README.md
Browse files
README.md
CHANGED
@@ -10,12 +10,18 @@ tags:
|
|
10 |
# ruELECTRA large model multitask (cased) for Sentence Embeddings in Russian language.
|
11 |
|
12 |
For better quality, use mean token embeddings.
|
|
|
13 |
## Usage (HuggingFace Models Repository)
|
|
|
14 |
You can use the model directly from the model repository to compute sentence embeddings:
|
|
|
|
|
15 |
```python
|
16 |
from transformers import AutoTokenizer, AutoModel
|
17 |
import torch
|
|
|
18 |
#Mean Pooling - Take attention mask into account for correct averaging
|
|
|
19 |
def mean_pooling(model_output, attention_mask):
|
20 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
21 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
@@ -25,14 +31,18 @@ def mean_pooling(model_output, attention_mask):
|
|
25 |
#Sentences we want sentence embeddings for
|
26 |
sentences = ['Привет! Как твои дела?',
|
27 |
'А правда, что 42 твое любимое число?']
|
|
|
28 |
#Load AutoModel from huggingface model repository
|
29 |
tokenizer = AutoTokenizer.from_pretrained("ai-forever/ruELECTRA-large")
|
30 |
model = AutoModel.from_pretrained("ai-forever/ruELECTRA-large")
|
|
|
31 |
#Tokenize sentences
|
32 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')
|
|
|
33 |
#Compute token embeddings
|
34 |
with torch.no_grad():
|
35 |
model_output = model(**encoded_input)
|
|
|
36 |
#Perform pooling. In this case, mean pooling
|
37 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
38 |
```
|
|
|
10 |
# ruELECTRA large model multitask (cased) for Sentence Embeddings in Russian language.
|
11 |
|
12 |
For better quality, use mean token embeddings.
|
13 |
+
|
14 |
## Usage (HuggingFace Models Repository)
|
15 |
+
|
16 |
You can use the model directly from the model repository to compute sentence embeddings:
|
17 |
+
|
18 |
+
|
19 |
```python
|
20 |
from transformers import AutoTokenizer, AutoModel
|
21 |
import torch
|
22 |
+
|
23 |
#Mean Pooling - Take attention mask into account for correct averaging
|
24 |
+
|
25 |
def mean_pooling(model_output, attention_mask):
|
26 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
27 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
|
31 |
#Sentences we want sentence embeddings for
|
32 |
sentences = ['Привет! Как твои дела?',
|
33 |
'А правда, что 42 твое любимое число?']
|
34 |
+
|
35 |
#Load AutoModel from huggingface model repository
|
36 |
tokenizer = AutoTokenizer.from_pretrained("ai-forever/ruELECTRA-large")
|
37 |
model = AutoModel.from_pretrained("ai-forever/ruELECTRA-large")
|
38 |
+
|
39 |
#Tokenize sentences
|
40 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')
|
41 |
+
|
42 |
#Compute token embeddings
|
43 |
with torch.no_grad():
|
44 |
model_output = model(**encoded_input)
|
45 |
+
|
46 |
#Perform pooling. In this case, mean pooling
|
47 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
48 |
```
|