--- license: mit language: - ru tags: - PyTorch - Transformers --- # ruELECTRA large model (cased) for Embeddings in Russian language. About model family https://arxiv.org/abs/2003.10555 ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: For better quality, use mean token embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['Привет! Как твои дела?', 'А правда, что 42 твое любимое число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("ai-forever/ruElectra-large") model = AutoModel.from_pretrained("ai-forever/ruElectra-large") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` # Authors + [SaluteDevices](https://sberdevices.ru/) team.