Chris Alexiuk commited on
Commit
49a52c2
·
verified ·
1 Parent(s): e504524

ai-maker-space/medical_nonmedical-classifier

Browse files
README.md CHANGED
@@ -8,8 +8,6 @@ metrics:
8
  model-index:
9
  - name: med_nonmed
10
  results: []
11
- datasets:
12
- - ai-maker-space/medical_nonmedical
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,25 +15,22 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # med_nonmed
19
 
20
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [Medical/Non-Medical Dataset](https://huggingface.co/datasets/ai-maker-space/medical_nonmedical) dataset.
21
-
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.0135
24
- - F1: 0.9934
25
 
26
  ## Model description
27
 
28
- A fine-tuned classifier based on the DistilBERT Base Uncased model.
29
 
30
  ## Intended uses & limitations
31
 
32
- This model can be used for rough filtering of medical/non-medical text. Potential use-case includes filtering emails.
33
-
34
- The model is in v0 and should not be used in critical functions without proper evaluation and risk assessment.
35
 
36
  ## Training and evaluation data
37
 
38
- The model was trained on a custom dataset that can be found [here](https://huggingface.co/datasets/ai-maker-space/medical_nonmedical) which is a composite of two separate medical and non-medical datasets.
39
 
40
  ## Training procedure
41
 
@@ -54,13 +49,13 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | F1 |
56
  |:-------------:|:-----:|:----:|:---------------:|:------:|
57
- | 0.0587 | 1.0 | 622 | 0.0279 | 0.9871 |
58
- | 0.0088 | 2.0 | 1244 | 0.0135 | 0.9934 |
59
 
60
 
61
  ### Framework versions
62
 
63
- - Transformers 4.34.0
64
- - Pytorch 2.0.1+cu118
65
- - Datasets 2.14.5
66
- - Tokenizers 0.14.1
 
8
  model-index:
9
  - name: med_nonmed
10
  results: []
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
15
 
16
  # med_nonmed
17
 
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
 
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.0260
21
+ - F1: 0.9910
22
 
23
  ## Model description
24
 
25
+ More information needed
26
 
27
  ## Intended uses & limitations
28
 
29
+ More information needed
 
 
30
 
31
  ## Training and evaluation data
32
 
33
+ More information needed
34
 
35
  ## Training procedure
36
 
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | F1 |
51
  |:-------------:|:-----:|:----:|:---------------:|:------:|
52
+ | 0.0581 | 1.0 | 622 | 0.0220 | 0.9895 |
53
+ | 0.0102 | 2.0 | 1244 | 0.0260 | 0.9910 |
54
 
55
 
56
  ### Framework versions
57
 
58
+ - Transformers 4.38.2
59
+ - Pytorch 2.2.1+cu121
60
+ - Datasets 2.18.0
61
+ - Tokenizers 0.15.2
runs/Mar19_16-43-56_24c553500917/events.out.tfevents.1710866638.24c553500917.243.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c526c4755f4e8442c0a03167bb534225a8667f82c995d719eb217d3fb7f94c1
3
- size 4955
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:352f5116387b910707324e8b1e0a8a66b889eff7feb52f59b87ebd9112783ca2
3
+ size 5837