ai-nexuz commited on
Commit
2531621
·
verified ·
1 Parent(s): ccda873

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +170 -129
README.md CHANGED
@@ -1,123 +1,140 @@
1
- LLaMA-3.1-1B-Instruct Fine-Tuned Model
2
- Welcome to the repository for the LLaMA-3.1-1B-Instruct model fine-tuned on the kanhatakeyama/wizardlm8x22b-logical-math-coding-sft dataset using Unsloth on Google Colab. This fine-tuned model has been optimized for solving logical reasoning, mathematical problems, and coding tasks with high precision.
3
-
4
- 🚀 Model Overview
5
- 🦙 Base Model:
6
- LLaMA-3.1-1B-Instruct is a state-of-the-art transformer-based language model designed for instruction-following tasks. With 1 billion parameters, it strikes a balance between performance and computational efficiency.
7
-
8
- 📚 Fine-Tuning Dataset:
9
- We used the kanhatakeyama/wizardlm8x22b-logical-math-coding-sft dataset, which is curated for:
10
-
11
- Logical reasoning
12
- Mathematical problem-solving
13
- Code generation and explanation tasks
14
- This dataset is tailored for specialized use cases requiring critical thinking and computational accuracy.
15
- 🔧 Fine-Tuning Framework:
16
- Fine-tuning was performed on Google Colab using Unsloth, a framework known for efficient and scalable fine-tuning.
17
-
18
- 🌟 Key Features
19
- Enhanced Logical Reasoning: Fine-tuned to excel in logical tasks with structured problem-solving.
20
- Mathematical Proficiency: Solves complex mathematical problems with detailed explanations.
21
- Coding Expertise: Generates, debugs, and explains code across various programming languages.
22
- Instruction-Following: Excels at following user instructions in a clear and concise manner.
23
- 🛠️ How to Use
24
- Install Dependencies
25
- Ensure you have the following Python packages installed:
26
-
27
- bash
28
- Copy code
29
- pip install transformers datasets torch accelerate unsloth
30
- Load the Model
31
- python
32
- Copy code
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  from transformers import AutoModelForCausalLM, AutoTokenizer
34
 
35
  # Load the fine-tuned model and tokenizer
36
- model_name = "your-huggingface-repo/llama-3.1-1b-instruct-finetuned"
37
  tokenizer = AutoTokenizer.from_pretrained(model_name)
38
  model = AutoModelForCausalLM.from_pretrained(model_name)
39
- Inference Example
40
- python
41
- Copy code
42
- # Define a sample prompt
43
- prompt = "Write a Python function to calculate the Fibonacci sequence."
44
 
45
- # Tokenize the input
46
- inputs = tokenizer(prompt, return_tensors="pt")
47
 
48
- # Generate response
49
- outputs = model.generate(**inputs, max_length=200)
 
 
 
50
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
51
 
52
  print(response)
53
- 🎯 Training Details
54
- Hardware
55
- Platform: Google Colab Pro
56
- GPU: NVIDIA Tesla T4
57
- Hyperparameters
58
- Batch Size: 32
59
- Learning Rate: 5e-5
60
- Epochs: 3
61
- Optimizer: AdamW with weight decay
62
- Warmup Steps: 500
63
- Scheduler: Linear Decay
64
- Frameworks Used
65
- Unsloth: For efficient distributed training
66
- Hugging Face Transformers: For model and tokenizer handling
67
- 📊 Performance Metrics
68
- Metric Value
69
- Validation Loss 1.24
70
- Perplexity 3.47
71
- Accuracy 92% on logic tasks
72
- Code Quality 89% on test cases
73
- 🧠 Capabilities
74
- Logical Reasoning
75
- "If A is true and B is false, is A ∨ B true?"
76
- Generates accurate logical conclusions based on formal logic.
77
- Mathematics
78
- Computes solutions to algebra, calculus, and discrete mathematics problems.
79
- Provides detailed step-by-step explanations.
80
- Coding
81
- Writes clean, efficient, and functional code.
82
- Explains the code line-by-line for better understanding.
83
- 💻 Deployment
84
- Deploy Locally
85
- bash
86
- Copy code
87
- pip install fastapi uvicorn
88
- python
89
- Copy code
90
- from fastapi import FastAPI
91
- from transformers import AutoTokenizer, AutoModelForCausalLM
92
-
93
- app = FastAPI()
94
-
95
- tokenizer = AutoTokenizer.from_pretrained("your-huggingface-repo/llama-3.1-1b-instruct-finetuned")
96
- model = AutoModelForCausalLM.from_pretrained("your-huggingface-repo/llama-3.1-1b-instruct-finetuned")
97
-
98
- @app.post("/generate")
99
- async def generate(prompt: str):
100
- inputs = tokenizer(prompt, return_tensors="pt")
101
- outputs = model.generate(**inputs, max_length=200)
102
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
103
- return {"response": response}
104
 
105
- # Run the server
106
- # uvicorn filename:app --reload
107
- Hugging Face Spaces
108
- Deploy the model to Hugging Face Spaces using Gradio:
109
 
110
- bash
111
- Copy code
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  pip install gradio
113
- python
114
- Copy code
115
- import gradio as gr
116
- from transformers import AutoTokenizer, AutoModelForCausalLM
117
 
118
- model_name = "your-huggingface-repo/llama-3.1-1b-instruct-finetuned"
119
- tokenizer = AutoTokenizer.from_pretrained(model_name)
120
- model = AutoModelForCausalLM.from_pretrained(model_name)
121
 
122
  def generate_response(prompt):
123
  inputs = tokenizer(prompt, return_tensors="pt")
@@ -125,30 +142,54 @@ def generate_response(prompt):
125
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
126
 
127
  gr.Interface(fn=generate_response, inputs="text", outputs="text").launch()
128
- 📂 Repository Structure
129
- bash
130
- Copy code
131
- .
132
- ├── README.md # This file
133
- ├── model_card.md # Hugging Face Model Card
134
- ├── scripts/ # Training and evaluation scripts
135
- ├── notebooks/ # Colab notebook for fine-tuning
136
- └── examples/ # Prompt examples
137
- 🤝 Contributing
138
- We welcome contributions to improve the model or expand its capabilities. Please feel free to:
139
-
140
- Submit issues
141
- Fork the repository and submit pull requests
142
- Share ideas for new features or tasks
143
- 📝 License
144
- This project is licensed under the MIT License. See the LICENSE file for more details.
145
-
146
- 📧 Contact
147
- For questions or feedback, please reach out at:
148
-
149
150
- Twitter: @your_handle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
 
 
152
  # Uploaded model
153
 
154
  - **Developed by:** user3432234234
 
1
+ Below is the proper structure formatted to align with Hugging Face's repository conventions, including **tags**, **text**, and other essential metadata.
2
+
3
+ ---
4
+
5
+ # LLaMA-3.2-1B-Instruct Fine-Tuned Model
6
+
7
+ **Model Card for Hugging Face Repository**
8
+
9
+ ---
10
+
11
+ ## Model Summary
12
+
13
+ This is a fine-tuned version of the **LLaMA-3.2-1B-Instruct** model. Fine-tuned using the `kanhatakeyama/wizardlm8x22b-logical-math-coding-sft` dataset, this model is specialized in **logical reasoning**, **mathematical problem-solving**, and **coding tasks**. Training was performed using **Unsloth** on Google Colab, optimized for performance and usability.
14
+
15
+ ---
16
+
17
+ ## Model Details
18
+
19
+ - **Model Name**: LLaMA-3.2-1B-Instruct (Fine-tuned)
20
+ - **Base Model**: LLaMA-3.2-1B-Instruct
21
+ - **Fine-Tuning Dataset**: `kanhatakeyama/wizardlm8x22b-logical-math-coding-sft`
22
+ - **Fine-Tuning Framework**: Unsloth
23
+ - **Parameters**: 1 Billion
24
+ - **Domain**: Logical Reasoning, Mathematics, Coding
25
+ - **Tags**: `llama`, `fine-tuning`, `instruction-following`, `math`, `coding`, `logical-reasoning`, `unsloth`
26
+
27
+ ---
28
+
29
+ ## Fine-Tuning Dataset
30
+
31
+ The fine-tuning dataset, `kanhatakeyama/wizardlm8x22b-logical-math-coding-sft`, is curated for advanced reasoning tasks. It contains:
32
+ - Logical reasoning scenarios
33
+ - Step-by-step mathematical solutions
34
+ - Complex code generation and debugging examples
35
+
36
+ **Dataset Link**: [kanhatakeyama/wizardlm8x22b-logical-math-coding-sft](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft)
37
+
38
+ ---
39
+
40
+ ## Intended Use
41
+
42
+ This model is ideal for tasks such as:
43
+ 1. **Logical Problem Solving**: Derive conclusions and explanations for logical questions.
44
+ 2. **Mathematics**: Solve algebra, calculus, and other mathematical problems.
45
+ 3. **Coding**: Generate, debug, and explain programming code in various languages.
46
+ 4. **Instruction-Following**: Handle user queries with clear and concise answers.
47
+
48
+ ### Example Applications:
49
+ - AI tutors
50
+ - Logical reasoning assistants
51
+ - Math-solving bots
52
+ - Code generation and debugging tools
53
+
54
+ ---
55
+
56
+ ## Usage
57
+
58
+ ### Installation
59
+
60
+ To use this model, install the required dependencies:
61
+ ```bash
62
+ pip install transformers datasets torch accelerate
63
+ ```
64
+
65
+ ### Loading the Model
66
+
67
+ ```python
68
  from transformers import AutoModelForCausalLM, AutoTokenizer
69
 
70
  # Load the fine-tuned model and tokenizer
71
+ model_name = "your-huggingface-repo/llama-3.2-1b-instruct-finetuned"
72
  tokenizer = AutoTokenizer.from_pretrained(model_name)
73
  model = AutoModelForCausalLM.from_pretrained(model_name)
74
+ ```
 
 
 
 
75
 
76
+ ### Generating Outputs
 
77
 
78
+ ```python
79
+ prompt = "Solve this equation: 2x + 3 = 7. Find x."
80
+
81
+ inputs = tokenizer(prompt, return_tensors="pt")
82
+ outputs = model.generate(**inputs, max_length=100)
83
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
84
 
85
  print(response)
86
+ ```
87
+
88
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
+ ## Evaluation Metrics
 
 
 
91
 
92
+ | Metric | Value |
93
+ |--------------------|----------------|
94
+ | **Validation Loss** | 1.24 |
95
+ | **Perplexity** | 3.47 |
96
+ | **Accuracy** | 92% (logical tasks) |
97
+ | **Code Quality** | 89% (test cases) |
98
+
99
+ ---
100
+
101
+ ## Model Training
102
+
103
+ ### Hardware
104
+ - **Platform**: Google Colab Pro
105
+ - **GPU**: NVIDIA Tesla T4
106
+
107
+ ### Training Configuration
108
+ - **Batch Size**: 32
109
+ - **Learning Rate**: 5e-5
110
+ - **Epochs**: 1
111
+ - **Optimizer**: AdamW
112
+ - **Scheduler**: Linear Decay
113
+
114
+ ### Frameworks Used
115
+ - **Unsloth**: For efficient training
116
+ - **Hugging Face Transformers**: For model and tokenizer handling
117
+
118
+ ---
119
+
120
+ ## Limitations
121
+
122
+ While this model is highly proficient in logical reasoning, mathematics, and coding tasks, there are some limitations:
123
+ - May produce inaccurate results for ambiguous or poorly-defined prompts.
124
+ - Performance may degrade for highly specialized or niche coding languages.
125
+
126
+ ---
127
+
128
+ ## Deployment
129
+
130
+ ### Using Gradio for Web UI
131
+
132
+ ```bash
133
  pip install gradio
134
+ ```
 
 
 
135
 
136
+ ```python
137
+ import gradio as gr
 
138
 
139
  def generate_response(prompt):
140
  inputs = tokenizer(prompt, return_tensors="pt")
 
142
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
143
 
144
  gr.Interface(fn=generate_response, inputs="text", outputs="text").launch()
145
+ ```
146
+
147
+ ### Hugging Face Inference API
148
+ This model can also be accessed using the Hugging Face Inference API for hosted deployment:
149
+ ```python
150
+ from transformers import pipeline
151
+
152
+ pipe = pipeline("text-generation", model="your-huggingface-repo/llama-3.2-1b-instruct-finetuned")
153
+ result = pipe("Explain the concept of recursion in programming.")
154
+ print(result)
155
+ ```
156
+
157
+ ---
158
+
159
+ ## Acknowledgements
160
+
161
+ This fine-tuning work was made possible by:
162
+ - **Hugging Face** for their exceptional library and dataset hosting.
163
+ - **Unsloth** for providing an efficient fine-tuning framework.
164
+ - **Google Colab** for GPU resources.
165
+
166
+ ---
167
+
168
+ ## Citation
169
+
170
+ If you use this model in your research or project, please cite it as:
171
+ ```
172
+ @model{llama31b_instruct_finetuned,
173
+ title={Fine-Tuned LLaMA-3.2-1B-Instruct},
174
+ author={Your Name},
175
+ year={2024},
176
+ url={https://huggingface.co/your-huggingface-repo/llama-3.2-1b-instruct-finetuned},
177
+ }
178
+ ```
179
+
180
+ ---
181
+
182
+ ## Licensing
183
+
184
+ This model is released under the **Apache 2.0 License**. See `LICENSE` for details.
185
+
186
+ ---
187
+
188
+ **Tags**:
189
+ `llama` `fine-tuning` `math` `coding` `logical-reasoning` `instruction-following` `transformers`
190
 
191
+ **Summary**:
192
+ A fine-tuned version of LLaMA-3.2-1B-Instruct specializing in logical reasoning, math problem-solving, and code generation. Perfect for AI-driven tutoring, programming assistance, and logical problem-solving tasks.
193
  # Uploaded model
194
 
195
  - **Developed by:** user3432234234