--- base_model: - ai-sage/GigaChat-20B-A3B-instruct language: - ru - en license: mit pipeline_tag: text-generation library_name: transformers --- # GigaChat-20B-A3B-instruct bf16 This model is part of the GigaChat family of Russian LLMs, based on [ai-sage/GigaChat-20B-A3B-instruct](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct). It supports a context length of 131,000 tokens. More details are available in [this habr article](https://habr.com/en/companies/sberdevices/articles/865996/) and the original instruct model card. The model was presented in [GigaChat Family: Efficient Russian Language Modeling Through Mixture of Experts Architecture](https://huggingface.co/papers/2506.09440). ## Example Usage with Transformers ```bash pip install --upgrade transformers torch accelerate bitsandbytes ``` ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "ai-sage/GigaChat-20B-A3B-instruct-bf16" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16) model.generation_config = GenerationConfig.from_pretrained(model_name) messages = [ {"role": "user", "content": "Докажи теорему о неподвижной точке"} ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_tensor.to(model.device)) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False) print(result) ```