Update README.md
Browse files
README.md
CHANGED
@@ -20,8 +20,6 @@ Please check the corresponding huggingface dataset card for more details.
|
|
20 |
This was trained as part of the blog [Introducing Airavata: Hindi Instruction-tuned Chat Model](https://ai4bharat.github.io/airavata).
|
21 |
The codebase used to train and evaluate this model can be found at [https://github.com/AI4Bharat/IndicInstruct](https://github.com/AI4Bharat/IndicInstruct).
|
22 |
|
23 |
-
|
24 |
-
|
25 |
## Usage
|
26 |
|
27 |
Clone [https://github.com/AI4Bharat/IndicInstruct](https://github.com/AI4Bharat/IndicInstruct) and install the required dependencies. Then download or clone this model to the same machine.
|
@@ -51,6 +49,70 @@ We fine-tune OpenHathi base model on the aforementioned IndicInstruct dataset wi
|
|
51 |
|
52 |
We recommend the readers to check out [our official blog post](https://ai4bharat.github.io/airavata) for more details on the model training, ablations and evaluation results.
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
## Citation
|
55 |
|
56 |
```bibtex
|
|
|
20 |
This was trained as part of the blog [Introducing Airavata: Hindi Instruction-tuned Chat Model](https://ai4bharat.github.io/airavata).
|
21 |
The codebase used to train and evaluate this model can be found at [https://github.com/AI4Bharat/IndicInstruct](https://github.com/AI4Bharat/IndicInstruct).
|
22 |
|
|
|
|
|
23 |
## Usage
|
24 |
|
25 |
Clone [https://github.com/AI4Bharat/IndicInstruct](https://github.com/AI4Bharat/IndicInstruct) and install the required dependencies. Then download or clone this model to the same machine.
|
|
|
49 |
|
50 |
We recommend the readers to check out [our official blog post](https://ai4bharat.github.io/airavata) for more details on the model training, ablations and evaluation results.
|
51 |
|
52 |
+
## Example
|
53 |
+
|
54 |
+
```python3
|
55 |
+
import torch
|
56 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
57 |
+
|
58 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
+
|
60 |
+
|
61 |
+
def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
|
62 |
+
formatted_text = ""
|
63 |
+
for message in messages:
|
64 |
+
if message["role"] == "system":
|
65 |
+
formatted_text += "<|system|>\n" + message["content"] + "\n"
|
66 |
+
elif message["role"] == "user":
|
67 |
+
formatted_text += "<|user|>\n" + message["content"] + "\n"
|
68 |
+
elif message["role"] == "assistant":
|
69 |
+
formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
|
70 |
+
else:
|
71 |
+
raise ValueError(
|
72 |
+
"Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
|
73 |
+
message["role"]
|
74 |
+
)
|
75 |
+
)
|
76 |
+
formatted_text += "<|assistant|>\n"
|
77 |
+
formatted_text = bos + formatted_text if add_bos else formatted_text
|
78 |
+
return formatted_text
|
79 |
+
|
80 |
+
|
81 |
+
def inference(input_prompts, model, tokenizer):
|
82 |
+
input_prompts = [
|
83 |
+
create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
84 |
+
for input_prompt in input_prompts
|
85 |
+
]
|
86 |
+
|
87 |
+
encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
88 |
+
encodings = encodings.to(device)
|
89 |
+
|
90 |
+
with torch.inference_mode():
|
91 |
+
outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)
|
92 |
+
|
93 |
+
output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
94 |
+
|
95 |
+
input_prompts = [
|
96 |
+
tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
|
97 |
+
]
|
98 |
+
output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
99 |
+
return output_texts
|
100 |
+
|
101 |
+
|
102 |
+
model_name = "ai4bharat/Airavata"
|
103 |
+
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", token=hf_token)
|
105 |
+
tokenizer.pad_token = tokenizer.eos_token
|
106 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token).to(device)
|
107 |
+
|
108 |
+
input_prompts = [
|
109 |
+
"मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।",
|
110 |
+
"मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।",
|
111 |
+
]
|
112 |
+
outputs = inference(input_prompts, model, tokenizer)
|
113 |
+
print(outputs)
|
114 |
+
```
|
115 |
+
|
116 |
## Citation
|
117 |
|
118 |
```bibtex
|