# aiXcoder-colt This repository contains the implementation of CoLT in our papers, a novel fine-tuning approach for enhancing large language models' ability to utilize information within long contexts for code completion tasks. ## Resources ### Dataset - **CoLT-132K dataset**: A large-scale repo-level code completion dataset comprising 132,000 samples across four programming languages. - **Download**: [https://zenodo.org/records/15019938](https://zenodo.org/records/15019938) ### Models - **Trained Models**: This repository includes our models (aiXcoder-7B-v2, DS-Coder and Code Llama) trained with the CoLT approach. - **Download**: [https://zenodo.org/records/15021246](https://zenodo.org/records/15021246) ## Experiment Reproduction We use the latest TRL framework(https://github.com/huggingface/trl) code for our experiments. To reproduce our results: ### 1. Prompt Construction Files - `aiXcoder-colt/prompt/prompt_aixcoder_colt.py` - `aiXcoder-colt/prompt/prompt_codellama.py` - `aiXcoder-colt/prompt/prompt_codeqwen.py` - `aiXcoder-colt/prompt/prompt_deepseekcoder.py` ### 2. Training Scripts - **SFT (Supervised Fine-Tuning)**: See scripts in `aiXcoder-colt/commands/sft/` - **DPO (Direct Preference Optimization)**: See scripts in `aiXcoder-colt/commands/po/` ### 3. Reject Sampling for DPO The `aiXcoder-colt/Reject_Sample/` directory contains implementation and evaluation scripts for our reject sampling approach used in Direct Preference Optimization: - **Model-specific implementations**: - `aixcoder/`: Reject sampling for aiXcoder model - `codellama/`: Reject sampling for Code Llama model - `deepseek/`: Reject sampling for DeepSeek-Coder model - **Evaluation scripts**: - `eval_api.py`: API-based evaluation script - `eval_line.py`: Line-level evaluation script - `eval_span.py`: Span-level evaluation script - `inference.py`: Model inference script for generating completions ## Dependencies In our experiments, we utilized two Docker environments for TRL training and vLLM (reject sampling). Below are the key dependencies for each environment, excluding redundant packages: ### TRL Training Environment: - transformers==4.46.0.dev0 - torch==2.4.0a0+07cecf4168.nv24.5 - accelerate==1.0.0 - deepspeed==0.15.2 - peft==0.13.1 - flash-attn==2.4.2 - datasets==3.0.1 - wandb==0.15.0 ### vLLM Inference Environment: - vllm==0.6.0+cu124 - torch==2.4.0 - transformers==4.44.2 - vllm-flash-attn==2.6.1 - xformers==0.0.27.post2 - flashinfer==0.1.6+cu121torch2.4 - fastapi==0.114.1 - uvicorn==0.30.6 Complete dependency lists can be found in the `dependency` directory.