File size: 3,842 Bytes
d95ec05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/qlora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
# geopandas
- path: https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet
type: pretrain
ds_type: parquet
text_column: text
split: train
# examples
- path: https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345
type: pretrain
ds_type: parquet
text_column: text
split: train
# docs
- path: https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet
type: pretrain
ds_type: parquet
text_column: text
split: train
- path: mlabonne/FineTome-100k
type: chat_template
split: train[:1%]
chat_template: qwen_25
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.
output_dir: ./outputs/qlora-out
wandb_project: fused-io-copilot
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 2
optimizer: lion_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
warmup_steps: 20
saves_per_epoch: 1
deepspeed:
weight_decay: 0.01
special_tokens:
pad_token: "<|end_of_text|>"
save_safetensors: true
```
</details><br>
# outputs/qlora-out
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet, the https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345, the https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet and the mlabonne/FineTome-100k datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.LION_8BIT and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
|