File size: 3,842 Bytes
d95ec05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/qlora-out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-Coder-7B-Instruct

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  # geopandas
  - path: https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  # examples
  - path: https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  # docs
  - path: https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet
    type: pretrain
    ds_type: parquet
    text_column: text
    split: train
  - path: mlabonne/FineTome-100k
    type: chat_template
    split: train[:1%]
    chat_template: qwen_25
    field_messages: conversations
    message_field_role: from
    message_field_content: value

dataset_prepared_path: last_run_prepared
val_set_size: 0.
output_dir: ./outputs/qlora-out

wandb_project: fused-io-copilot
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:

sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false


gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 2
optimizer: lion_8bit
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true

gradient_checkpointing: true
logging_steps: 1
flash_attention: true

warmup_steps: 20
saves_per_epoch: 1
deepspeed:
weight_decay: 0.01
special_tokens:
  pad_token: "<|end_of_text|>"

save_safetensors: true

```

</details><br>

# outputs/qlora-out

This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the https://www.fused.io/server/v1/realtime-shared/fsh_7UePa8c68x8u89FjmK2Tuu/run/file?dtype_out_vector=parquet, the https://staging.fused.io/server/v1/realtime-shared/fsh_2xCVySNfnwmUhWPssX24cn/run/file?dtype_out_raster=png&dtype_out_vector=parquet&cb=12345, the https://www.fused.io/server/v1/realtime-shared/fsh_EycsvX70Y3WosxHhdJ8Y9/run/file?dtype_out_raster=png&dtype_out_vector=parquet and the mlabonne/FineTome-100k datasets.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.LION_8BIT and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2

### Training results



### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0