File size: 6,581 Bytes
faf6c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ModernBERT-large_v3_scratch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ModernBERT-large_v3_scratch

This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1638
- Accuracy: 0.9008
- Precision Macro: 0.7724
- Recall Macro: 0.7784
- F1 Macro: 0.7752
- F1 Weighted: 0.9013

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:|
| 2.1409        | 1.0   | 179  | 0.4797          | 0.8155   | 0.7656          | 0.5858       | 0.5889   | 0.8001      |
| 1.8913        | 2.0   | 358  | 0.4433          | 0.8383   | 0.7709          | 0.6087       | 0.6125   | 0.8239      |
| 1.7772        | 3.0   | 537  | 0.3867          | 0.8629   | 0.7665          | 0.6576       | 0.6777   | 0.8535      |
| 1.3739        | 4.0   | 716  | 0.3396          | 0.8819   | 0.7647          | 0.6833       | 0.7033   | 0.8742      |
| 1.121         | 5.0   | 895  | 0.3194          | 0.8926   | 0.7935          | 0.7307       | 0.7533   | 0.8884      |
| 0.8297        | 6.0   | 1074 | 0.4077          | 0.8800   | 0.8479          | 0.6714       | 0.7001   | 0.8696      |
| 0.7174        | 7.0   | 1253 | 0.4211          | 0.8737   | 0.7463          | 0.7607       | 0.7510   | 0.8748      |
| 0.5598        | 8.0   | 1432 | 0.4373          | 0.8932   | 0.7960          | 0.6906       | 0.7144   | 0.8848      |
| 0.4317        | 9.0   | 1611 | 0.5494          | 0.8711   | 0.7343          | 0.7678       | 0.7460   | 0.8748      |
| 0.3809        | 10.0  | 1790 | 0.4896          | 0.8920   | 0.7838          | 0.7139       | 0.7367   | 0.8865      |
| 0.2739        | 11.0  | 1969 | 0.6534          | 0.8888   | 0.7627          | 0.7727       | 0.7671   | 0.8896      |
| 0.1934        | 12.0  | 2148 | 0.5885          | 0.9008   | 0.8028          | 0.7404       | 0.7633   | 0.8968      |
| 0.1742        | 13.0  | 2327 | 0.7146          | 0.8825   | 0.8056          | 0.7260       | 0.7535   | 0.8781      |
| 0.0825        | 14.0  | 2506 | 0.8700          | 0.8970   | 0.7733          | 0.7348       | 0.7497   | 0.8938      |
| 0.0688        | 15.0  | 2685 | 0.8066          | 0.8939   | 0.7636          | 0.7315       | 0.7448   | 0.8910      |
| 0.0796        | 16.0  | 2864 | 0.8853          | 0.8970   | 0.8123          | 0.7289       | 0.7564   | 0.8920      |
| 0.1044        | 17.0  | 3043 | 0.8411          | 0.8913   | 0.7614          | 0.7502       | 0.7554   | 0.8904      |
| 0.0893        | 18.0  | 3222 | 0.8432          | 0.8983   | 0.7941          | 0.7347       | 0.7564   | 0.8942      |
| 0.0274        | 19.0  | 3401 | 0.9003          | 0.8926   | 0.7772          | 0.7345       | 0.7515   | 0.8894      |
| 0.0161        | 20.0  | 3580 | 1.0964          | 0.8907   | 0.7648          | 0.7677       | 0.7659   | 0.8909      |
| 0.0066        | 21.0  | 3759 | 0.9782          | 0.8958   | 0.7639          | 0.7616       | 0.7627   | 0.8956      |
| 0.027         | 22.0  | 3938 | 1.0439          | 0.8913   | 0.7557          | 0.7800       | 0.7663   | 0.8935      |
| 0.0569        | 23.0  | 4117 | 0.9039          | 0.9033   | 0.8002          | 0.7709       | 0.7838   | 0.9016      |
| 0.0126        | 24.0  | 4296 | 0.9952          | 0.9002   | 0.7845          | 0.7529       | 0.7663   | 0.8979      |
| 0.0047        | 25.0  | 4475 | 0.9702          | 0.9052   | 0.7872          | 0.7849       | 0.7860   | 0.9051      |
| 0.0091        | 26.0  | 4654 | 1.0793          | 0.8970   | 0.7821          | 0.7575       | 0.7682   | 0.8953      |
| 0.0038        | 27.0  | 4833 | 1.0187          | 0.9027   | 0.7781          | 0.7714       | 0.7745   | 0.9022      |
| 0.0028        | 28.0  | 5012 | 1.0220          | 0.9015   | 0.7739          | 0.7746       | 0.7742   | 0.9015      |
| 0.0025        | 29.0  | 5191 | 1.0514          | 0.9015   | 0.7757          | 0.7746       | 0.7751   | 0.9014      |
| 0.0002        | 30.0  | 5370 | 1.0703          | 0.9027   | 0.7771          | 0.7796       | 0.7783   | 0.9029      |
| 0.0138        | 31.0  | 5549 | 1.0361          | 0.9021   | 0.7767          | 0.7790       | 0.7778   | 0.9023      |
| 0.0017        | 32.0  | 5728 | 1.0631          | 0.9027   | 0.7777          | 0.7836       | 0.7806   | 0.9032      |
| 0.0015        | 33.0  | 5907 | 1.0906          | 0.9008   | 0.7708          | 0.7782       | 0.7743   | 0.9014      |
| 0.0111        | 34.0  | 6086 | 1.1079          | 0.9002   | 0.7703          | 0.7778       | 0.7739   | 0.9008      |
| 0.0001        | 35.0  | 6265 | 1.1265          | 0.8996   | 0.7698          | 0.7774       | 0.7735   | 0.9002      |
| 0.0012        | 36.0  | 6444 | 1.1395          | 0.9008   | 0.7707          | 0.7783       | 0.7743   | 0.9014      |
| 0.0001        | 37.0  | 6623 | 1.1534          | 0.9015   | 0.7728          | 0.7788       | 0.7757   | 0.9019      |
| 0.0001        | 38.0  | 6802 | 1.1619          | 0.9008   | 0.7724          | 0.7784       | 0.7752   | 0.9013      |
| 0.0001        | 39.0  | 6981 | 1.1634          | 0.9015   | 0.7728          | 0.7788       | 0.7757   | 0.9019      |
| 0.0007        | 40.0  | 7160 | 1.1638          | 0.9008   | 0.7724          | 0.7784       | 0.7752   | 0.9013      |


### Framework versions

- Transformers 4.55.0
- Pytorch 2.7.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4