File size: 8,829 Bytes
b39425e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import time
import argparse
import subprocess
import platform
from typing import Optional, Tuple, Dict
import threading
import numpy as np
from onnx import load, ModelProto
import onnxruntime as ort

os.environ["XLNX_ENABLE_CACHE"] = "0"
os.environ["PATH"] += (
    os.pathsep + f"{os.environ['CONDA_PREFIX']}\\Lib\\site-packages\\flexmlrt\\lib"
)

XRT_SMI_PATH = "C:\\Windows\\System32\\AMD\\xrt-smi.exe"

ONNX_DTYPE_TO_NP = {
    "tensor(float)": np.float32,
    "tensor(float16)": np.float16,
    "tensor(int64)": np.int64,
    "tensor(int32)": np.int32,
    "tensor(uint16)": np.uint16,
    "tensor(int16)": np.int16,
    "tensor(uint8)": np.uint8,
    "tensor(int8)": np.int8,
}


def generate_rand_data_from_onnx(

    model: ModelProto,

    lowest_int_val: Optional[int],

    highest_int_val: Optional[int],

) -> Dict[str, np.ndarray]:
    # Load the models

    sess = ort.InferenceSession(
        model.SerializePartialToString(), providers=["CPUExecutionProvider"]
    )

    inps = {}
    # Iterate over the first models inputs and generate random data
    for inp in sess.get_inputs():
        inp_shapes = list(inp.shape)  # mutable
        for inp_shape in inp_shapes:
            assert isinstance(
                inp_shape, int
            ), f"Found dynamic axes: {inp_shape}. Please freeze."
        np_type = ONNX_DTYPE_TO_NP[inp.type]
        if np.issubdtype(np_type, np.integer):
            iinfo = np.iinfo(np_type)
            if lowest_int_val is None:
                lowest_int_val = iinfo.min
            if highest_int_val is None:
                lowest_int_val = iinfo.max
            inps[inp.name] = np.random.randint(
                lowest_int_val, highest_int_val, size=tuple(inp_shapes), dtype=np_type
            )
        else:
            inps[inp.name] = np.random.rand(*inp_shapes).astype(np_type)

    return inps


def configure_npu_power(p_mode: Optional[str] = None) -> Tuple[int, str, str]:
    """

    Configures the NPU power state using xrt-smi.exe.



    Args:

        p_mode (string, optional): The desired power mode (p-mode).

            If None, displays current status.

            Refer to xrt-smi documentation for valid p-modes.

    Returns:

        tuple: (return_code, stdout, stderr) from the subprocess call.

               return_code is an integer, stdout and stderr are strings.

    Raises:

        OSError: If xrt-smi.exe is not found.

    """

    if platform.system() != "Windows":
        return (-1, "xrt-smi.exe is only available on Windows.", "")

    try:
        if p_mode is not None:
            command = [XRT_SMI_PATH, "configure", "--pmode", str(p_mode)]
        else:
            command = [
                XRT_SMI_PATH,
                "examine",
                "--report",
                "platform",
            ]  # Just display status

        process = subprocess.Popen(
            command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
        )
        stdout, stderr = process.communicate()
        return_code = process.returncode

        if return_code != 0:
            print(f"Error executing xrt-smi.exe: {stderr}")

        return return_code, stdout, stderr

    except FileNotFoundError:
        raise OSError("xrt-smi.exe not found.")
    except Exception as e:  # pylint: disable=broad-except
        print(f"An unexpected error occurred: {e}")
        return -1, "", str(e)


def main(

    model_file: str,

    vaip_config: str,

    cache_path: str,

    device: str,

    pmode: str,

    warmup_runs: int,

    inferences: int,

    lowest_int_value: Optional[int],

    highest_int_value: Optional[int],

    threads: int,

):

    assert os.path.exists(model_file)

    assert threads >= 1

    if device == "cpu":
        ort_session = ort.InferenceSession(
            model_file,
            providers=["CPUExecutionProvider"],
        )

    elif device == "npu":
        assert os.path.exists(vaip_config)
        assert os.path.exists(cache_path)
        cache_dir = os.path.dirname(os.path.abspath(cache_path))
        cache_key = os.path.basename(cache_path)
        print(f"Using cache directory {cache_dir} with key {cache_key}")

        ret_code, stdout, stderr = configure_npu_power(pmode)
        print(stdout)
        if ret_code != 0:
            print("Error configuring npu power mode.")
            print(stderr)

        sess_options = ort.SessionOptions()
        ort_session = ort.InferenceSession(
            model_file,
            providers=["VitisAIExecutionProvider"],
            sess_options=sess_options,
            provider_options=[
                {
                    "config_file": vaip_config,
                    "cacheDir": cache_dir,
                    "cacheKey": cache_key,
                }
            ],
        )

    elif device == "igpu":
        ort_session = ort.InferenceSession(
            model_file,
            providers=["DmlExecutionProvider"],
            provider_options=[{"device_id": 2}],
        )

    onnx_inputs = generate_rand_data_from_onnx(
        load(model_file),
        lowest_int_val=lowest_int_value,
        highest_int_val=highest_int_value,
    )

    # Warmup
    for _ in range(warmup_runs):
        ort_session.run(None, onnx_inputs)

    def run_inference(runs, session, inputs):
        for _ in range(runs):
            session.run(None, inputs)

    latencies = []
    num_threads = threads
    threads_list = []
    inferences_per_thread = inferences // num_threads
    remainder = inferences % num_threads
    print(f"inferences per thread: {inferences_per_thread}, remainder: {remainder}")
    start = time.perf_counter()
    for i in range(num_threads):
        num_runs = inferences_per_thread + (1 if i < remainder else 0)
        thread = threading.Thread(
            target=run_inference, args=(num_runs, ort_session, onnx_inputs)
        )
        threads_list.append(thread)
        thread.start()

    for thread in threads_list:
        thread.join()

    end = time.perf_counter()
    latencies.append((end - start) / inferences)
    print(f"Latencies: {latencies}")
    print(f"Benchmark results averaged over {inferences} inferences targeting {device}")
    print("Average latency (ms): ", round(np.mean(latencies) * 1e3, 3))
    print("Average throughput (inf/s): ", round(1 / np.mean(latencies), 3))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="",
    )

    parser.add_argument(
        "--pmode",
        type=str,
        choices=["default", "powersaver", "balanced", "performance", "turbo"],
        default="default",
        help="Desired power mode.",
    )

    parser.add_argument(
        "onnx_model",
        type=str,
        help="Provide the onnx model file.",
    )

    parser.add_argument(
        "--vai-config",
        type=str,
        help="Path to the vaip configuration json file.",
    )

    parser.add_argument(
        "--cache-path",
        required=False,
        type=str,
        help="Path to the saved compilation directory.",
    )

    parser.add_argument(
        "--device",
        required=False,
        type=str,
        default="npu",
        choices=["npu", "cpu", "igpu"],
        help="Select the device to run the measurements on.",
    )

    parser.add_argument(
        "--warmup-runs",
        required=False,
        default=10,
        type=int,
        help="The number of inferences to run before capturing performance.",
    )

    parser.add_argument(
        "--inferences",
        required=False,
        default=100,
        type=int,
        help="The number of inferences to average performance over.",
    )

    parser.add_argument(
        "--lowest-int-value",
        required=False,
        type=int,
        help="Lowest value the rng will produce if the model has an integer input type.",
    )

    parser.add_argument(
        "--highest-int-value",
        required=False,
        type=int,
        help="Highest value the rng will produce if the model has an integer input type.",
    )

    parser.add_argument(
        "--threads",
        default=1,
        required=False,
        type=int,
        help="The number of threads that are used to run the inferences.",
    )

    args = parser.parse_args()

    main(
        args.onnx_model,
        args.vai_config,
        args.cache_path,
        args.device,
        args.pmode,
        args.warmup_runs,
        args.inferences,
        args.lowest_int_value,
        args.highest_int_value,
        args.threads,
    )