Visual Document Retrieval
Transformers
Safetensors
retriever
dcaffo commited on
Commit
cc86842
·
verified ·
1 Parent(s): 847e67d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -174
README.md CHANGED
@@ -1,199 +1,67 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
 
102
 
103
- ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
 
 
 
114
 
115
- #### Factors
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model:
5
+ - openai/clip-vit-large-patch14
6
+ datasets:
7
+ - aimagelab/ReT-M2KR
8
  ---
9
 
10
  # Model Card for Model ID
11
 
 
12
 
13
+ ReT is a novel approach for multimodal document retrieval that supports both multimodal queries and documents. Unlike existing methods that only use features from the final layer of vision-and-language backbones, ReT employs a Transformer-based recurrent cell to leverage multi-level representations from different layers of both visual and textual backbones. The model features sigmoidal gates inspired by LSTM design that selectively control information flow between layers and modalities. ReT processes multimodal queries and documents independently, producing sets of latent tokens used for fine-grained late interaction similarity computation. ReT is designed to process images and text in both queries and documents. To this end, it has been trained and evaluated on a custom version of the challenging [M2KR](https://arxiv.org/abs/2402.08327) benchmark, with the following modifications: MSMARCO has been excluded as it does not contain images, and the documents from OVEN, InfoSeek, E-VQA, and OKVQA have been enriched with the addition of images.
14
 
15
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  <!-- Provide the basic links for the model. -->
18
 
19
+ - **Repository:** https://github.com/aimagelab/ReT
20
+ - **Paper:** [Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval](https://www.arxiv.org/abs/2503.01980) (CVPR 2025)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
 
22
 
23
+ ### Use with Transformers
24
+ Follow the instructions on the [repository](https://github.com/aimagelab/ReT) to install the required environment.
25
+ ```python
26
+ from src.models import RetrieverModel, RetModel
27
+ import torch
28
 
29
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
30
+ retriever = RetrieverModel.from_pretrained('aimagelab/ReT-OpenCLIP-ViT-G-14', device_map=device)
31
 
32
+ # QUERY
33
+ ret: RetModel = retriever.get_query_model()
34
+ ret.init_tokenizer_and_image_processor()
35
+ q_txt = "Retrieve documents that provide an answer to the question alongside the image: What is the content of the image?"
36
+ q_img = 'assets/model.png'
37
 
38
+ ret_feats = ret.get_ret_features([[q_txt, q_img]])
39
+ print(ret_feats.shape) # torch.Size([1, 32, 128])
40
 
 
41
 
42
+ # PASSAGE
43
+ ret: RetModel = retriever.get_passage_model()
44
+ ret.init_tokenizer_and_image_processor()
45
 
46
+ p_txt = """The image shows a diagram of what appears to be a neural network architecture using a fine-grained loss approach for multimodal learning.
47
+ The architecture has two parallel processing streams labeled "ReTQ" (left side, in purple) and "ReTD" (right side, in blue).
48
+ Each side has: ..."""
49
+ p_img = ''
50
 
51
+ ret_feats = ret.get_ret_features([[p_txt, p_img]])
52
+ print(ret_feats.shape) # torch.Size([1, 32, 128])
53
+ ```
54
 
55
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
58
 
59
  **BibTeX:**
60
+ ```
61
+ @inproceedings{caffagni2025recurrence,
62
+ title={{Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval}},
63
+ author={Caffagni, Davide and Sarto, Sara and Cornia, Marcella and Baraldi, Lorenzo and Cucchiara, Rita},
64
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
65
+ year={2025}
66
+ }
67
+ ```