File size: 8,119 Bytes
86d9d5d
049d96d
86d9d5d
049d96d
 
 
 
 
 
41b9ae4
4e88ca9
64e1297
049d96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86d9d5d
049d96d
 
 
9e12c27
049d96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a472df7
 
049d96d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
language: en
license: mit
datasets:
- acl-14-short-data
- semeval14
- semeval15
- semeval16
tags:
- gcn
- bert
- senticgcn
- text-classification
inference: false
model-index:
- name: SenticGCN
  results:
  - task:
      type: text-classification
      name: Sentic-GCN
    dataset:
      name: SemEval14-Laptop (Sentic-GCN)
      type: semeval14
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9436
    - name: F1 
      type: f1
      value: 0.9443
  - task:
      type: text-classification
      name: Sentic-GCN
    dataset:
      name: SemEval14-Restaurant (Sentic-GCN)
      type: semeval14
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9455
    - name: F1 
      type: f1
      value: 0.9199
  - task:
      type: text-classification
      name: Sentic-GCN
    dataset:
      name: SemEval15-Restaurant (Sentic-GCN)
      type: semeval15
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9675
    - name: F1 
      type: f1
      value: 0.9355
  - task:
      type: text-classification
      name: Sentic-GCN
    dataset:
      name: SemEval16-Restaurant (Sentic-GCN)
      type: semeval16
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9922
    - name: F1 
      type: f1
      value: 0.9915
      
- name: SenticGCNBert
  results:
  - task:
      type: text-classification
      name: Sentic-GCN Bert
    dataset:
      name: SemEval14-Laptop (Sentic-GCN Bert)
      type: semeval14
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9922
    - name: F1 
      type: f1
      value: 0.9915
  - task:
      type: text-classification
      name: Sentic-GCN Bert
    dataset:
      name: SemEval14-Restaurant (Sentic-GCN Bert)
      type: semeval14
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9739
    - name: F1 
      type: f1
      value: 0.9653
  - task:
      type: text-classification
      name: Sentic-GCN Bert
    dataset:
      name: SemEval15-Restaurant (Sentic-GCN Bert)
      type: semeval15
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9917
    - name: F1 
      type: f1
      value: 0.9878
  - task:
      type: text-classification
      name: Sentic-GCN Bert
    dataset:
      name: SemEval16-Restaurant (Sentic-GCN Bert)
      type: semeval16
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9937
    - name: F1 
      type: f1
      value: 0.9879
---

# Aspect-Based Sentiment Analysis
You can **test the model** at [aspect-based-sentiment-analysis](https://huggingface.co/spaces/aisingapore/aspect-based-sentiment-analysis).<br />
If you want to find out more information, please contact us at [email protected].


## Table of Contents
- [Model Details](#model-details)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Model Parameters](#parameters)

## Model Details
**Model Name:** Sentic-GCN
- **Description:** This is a neural network that utilises LSTM and GCN to detect the sentiment polarities of different aspects in the same sentence. The models used corresponds to the associated models described in the paper.
- **Paper:** Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks, 2021: 107643.
- **Author(s):** Bin Liang, Hang Su, Lin Gui, Erik Cambria, Ruifeng Xu. (2021).
- **URL:** https://github.com/BinLiang-NLP/Sentic-GCN 

# How to Get Started With the Model

## Install Python package
SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than aspect sentiment analysis are available in the python package. You can try them out at [NLP Hub - Demo](https://sgnlp.aisingapore.net/).

```python
pip install sgnlp

```

## Examples
For more full code guide (such as SenticGCN), please refer to this [documentation](https://sgnlp.aisingapore.net/docs/model/senticgcn.html). <br> Alternatively, you can also try out the [demo](https://huggingface.co/spaces/aisingapore/aspect-based-sentiment-analysis) for SenticGCN-Bert.

Example of SenticGCN-Bert model (with embedding):
```python
from sgnlp.models.sentic_gcn import(
    SenticGCNBertConfig,
    SenticGCNBertModel,
    SenticGCNBertEmbeddingConfig,
    SenticGCNBertEmbeddingModel,
    SenticGCNBertTokenizer,
    SenticGCNBertPreprocessor,
    SenticGCNBertPostprocessor
)

tokenizer = SenticGCNBertTokenizer.from_pretrained("bert-base-uncased")

# Load Model
config  = SenticGCNBertConfig.from_pretrained("./senticgcn_bert/config.json")
model   = SenticGCNBertModel.from_pretrained("./senticgcn_bert/pytorch_model.bin",config=config)

# Load Embedding Model
embed_config    = SenticGCNBertEmbeddingConfig.from_pretrained("bert-base-uncased")
embed_model     = SenticGCNBertEmbeddingModel.from_pretrained("bert-base-uncased", config=embed_config)

preprocessor = SenticGCNBertPreprocessor(
    tokenizer=tokenizer, embedding_model=embed_model,
    senticnet="./senticgcn_bert/senticnet.pickle",
    device="cpu")

postprocessor = SenticGCNBertPostprocessor()

inputs = [
    {  # Single word aspect
        "aspects": ["service"],
        "sentence": "To sum it up : service varies from good to mediorce , \
        depending on which waiter you get ; generally it is just average ok .",
    },
    {  # Single-word, multiple aspects
        "aspects": ["service", "decor"],
        "sentence": "Everything is always cooked to perfection , the service \
        is excellent, the decor cool and understated.",
    },
    {  # Multi-word aspect
        "aspects": ["grilled chicken", "chicken"],
        "sentence": "the only chicken i moderately enjoyed was their grilled chicken \
        special with edamame puree .",
    },
]

processed_inputs, processed_indices = preprocessor(inputs)
raw_outputs = model(processed_indices)

post_outputs = postprocessor(processed_inputs=processed_inputs, model_outputs=raw_outputs)

print(post_outputs[0])
# {'sentence': ['To', 'sum', 'it', 'up', ':', 'service', 'varies', 'from', 'good', 'to', 'mediorce', ',', 'depending', 'on', 'which'
#               'waiter', 'you', 'get', ';', 'generally', 'it', 'is', 'just', 'average', 'ok', '.'],
#  'aspects': [[5]],
#  'labels': [0]}

print(post_outputs[1])
# {'sentence': ['Everything', 'is', 'always', 'cooked', 'to', 'perfection', ',', 'the', 'service',
#               'is', 'excellent,', 'the', 'decor', 'cool', 'and', 'understated.'],
#  'aspects': [[8], [12]],
#  'labels': [1, 1]}

print(post_outputs[2])
# {'sentence': ['the', 'only', 'chicken', 'i', 'moderately', 'enjoyed', 'was', 'their', 'grilled',
#               'chicken', 'special', 'with', 'edamame', 'puree', '.'],
#  'aspects': [[8, 9], [2], [9]],
#  'labels': [1, 1, 1]}


```


# Training
The training datasets can be retrieved from the following Sentic-GCN([github](https://github.com/BinLiang-NLP/Sentic-GCN/tree/main/datasets)).

#### Training Results - For Sentic-GCN
- **Training Time:** ~10mins for ~35 epochs (early stopped)
- **Datasets:** SemEval14-Laptop/ SemEval14-Restaurant/ SemEval15-Restaurant/ SemEval16-Restaurant

#### Training Results - For Sentic-GCN Bert
- **Training Time:** ~1 hr for ~40 epochs (early stopped)
- **Datasets:** SemEval14-Laptop/ SemEval14-Restaurant/ SemEval15-Restaurant/ SemEval16-Restaurant

# Model Parameters
- **Model Weights:** [senticgcn](https://huggingface.co/aisingapore/SenticGCN/blob/main/senticgcn/pytorch_model.bin) | [senticgcn-bert](https://huggingface.co/aisingapore/SenticGCN/blob/main/senticgcn_bert/pytorch_model.bin)
- **Model Config:** [senticgcn](https://huggingface.co/aisingapore/SenticGCN/blob/main/senticgcn/config.json) | [senticgcn-bert](https://huggingface.co/aisingapore/SenticGCN/blob/main/senticgcn_bert/config.json)
- **Model Inputs:** Aspect (word), sentence containing the aspect
- **Model Outputs:** Sentiment of aspect, -1 (negative), 0 (neutral), 1 (postive)
- **Model Inference Info:**  1 sec on Intel(R) i7 Quad-Core @ 1.7GHz.