|
import os |
|
from shutil import copyfile |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple |
|
import sentencepiece as spm |
|
from tokenizers import processors |
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} |
|
SPIECE_UNDERLINE = "▁" |
|
|
|
|
|
class SEABPETokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct the SEA BPE Tokenizer tailored for SEA languages. Based on the Byte-Pair-Encoding with an expanded voculabulary size |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
legacy (`bool`, *optional*, defaults to `True`): |
|
Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622 |
|
which includes fixes to properly handle tokens that appear after special tokens. |
|
legacy means we are not modifying existing tokenizers without knowing. (And we need to manually update those core tokenizers) |
|
|
|
A simple example: |
|
|
|
- `legacy=True`: |
|
```python |
|
>>> from transformers import T5Tokenizer |
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True) |
|
>>> tokenizer.encode("Hello <extra_id_0>.") |
|
[8774, 32099, 3, 5, 1] |
|
``` |
|
- `legacy=False`: |
|
```python |
|
>>> from transformers import T5Tokenizer |
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False) |
|
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here |
|
[8774, 32099, 5, 1] |
|
``` |
|
Checkout the pull request and the issue [here](https://github.com/huggingface/transformers/pull/24565) for |
|
more details. |
|
|
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
unk_token="<unk>", |
|
bos_token=None, |
|
eos_token="<|endoftext|>", |
|
pad_token=None, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
add_bos_token=False, |
|
add_eos_token=False, |
|
clean_up_tokenization_spaces=False, |
|
legacy=None, |
|
**kwargs, |
|
): |
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.Load(vocab_file) |
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
sp_model_kwargs=self.sp_model_kwargs, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
legacy=legacy, |
|
**kwargs, |
|
) |
|
if legacy is None: |
|
logger.warning_once( |
|
f"You are using the default legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565, and set the legacy attribute accordingly." |
|
) |
|
legacy = True |
|
self.legacy = legacy |
|
self.vocab_file = vocab_file |
|
self.add_bos_token = add_bos_token |
|
self.add_eos_token = add_eos_token |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto() |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return self.sp_model.get_piece_size() |
|
|
|
def get_vocab(self): |
|
"""Returns vocab as a dict""" |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def tokenize(self, text, **kwargs) -> List[str]: |
|
if not self.legacy: |
|
text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ") |
|
return super().tokenize(text, **kwargs) |
|
|
|
def _tokenize(self, text): |
|
""" |
|
Returns a tokenized string. |
|
|
|
Since the sentencepiece internal model always adds a SPIECE_UNDERLINE, at the beginning of the provided text, |
|
we need to remove it by hand when the current text is a subsequence. This happens whenever the `self.tokenize` |
|
function is called with specials tokens: the input is split on the special tokens, and each subsequence is |
|
passed to `_tokenize`. Thus if a subsequence did not start with a `" "` or SPIECE_UNDERLINE, we have to remove |
|
the extra `SPIECE_UNDERLINE` prepended. |
|
""" |
|
if not self.legacy: |
|
is_first = text.startswith(SPIECE_UNDERLINE) |
|
if is_first: |
|
text = text[1:] |
|
tokens = self.sp_model.encode(text, out_type=str) |
|
if ( |
|
not self.legacy |
|
and (not is_first) |
|
and (not text.startswith(" ")) |
|
and tokens[0].startswith(SPIECE_UNDERLINE) |
|
): |
|
tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] |
|
return tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = self.sp_model.IdToPiece(index) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
current_sub_tokens = [] |
|
out_string = "" |
|
prev_is_special = False |
|
for i, token in enumerate(tokens): |
|
if token in self.all_special_tokens: |
|
if not prev_is_special and i != 0: |
|
out_string += " " |
|
out_string += self.sp_model.decode(current_sub_tokens) + token |
|
prev_is_special = True |
|
current_sub_tokens = [] |
|
else: |
|
current_sub_tokens.append(token) |
|
prev_is_special = False |
|
out_string += self.sp_model.decode(current_sub_tokens) |
|
return out_string |
|
|
|
def save_vocabulary( |
|
self, save_directory, filename_prefix: Optional[str] = None |
|
) -> Tuple[str]: |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, |
|
(filename_prefix + "-" if filename_prefix else "") |
|
+ VOCAB_FILES_NAMES["vocab_file"], |
|
) |
|
if os.path.abspath(self.vocab_file) != os.path.abspath( |
|
out_vocab_file |
|
) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
return (out_vocab_file,) |
|
|