Update codes to be in line with LLM-foundry update on October 30, 2023
Browse filesShould fix issues with regards to the refactoring of the attention mask codes on the transformers library
- hf_prefixlm_converter.py +99 -263
hf_prefixlm_converter.py
CHANGED
@@ -6,25 +6,24 @@ Causal LM to convert it to a Prefix LM.
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
9 |
-
import math
|
10 |
-
import warnings
|
11 |
from types import MethodType
|
12 |
from typing import Any, List, MutableMapping, Optional, Tuple, Union
|
13 |
import torch
|
14 |
-
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
15 |
-
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
16 |
-
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
|
17 |
-
from transformers.models.bloom.modeling_bloom import logging
|
18 |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
19 |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
20 |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
21 |
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
|
30 |
"""Converts a GPT-style Causal LM to a Prefix LM.
|
@@ -37,10 +36,12 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
37 |
|
38 |
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
39 |
"""
|
40 |
-
if hasattr(model,
|
41 |
return model
|
42 |
assert isinstance(model, _SUPPORTED_GPT_MODELS)
|
43 |
-
assert
|
|
|
|
|
44 |
|
45 |
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
|
46 |
"""Helper that gets a list of the model's attention modules.
|
@@ -56,7 +57,7 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
56 |
blocks = model.transformer.h
|
57 |
for block in blocks:
|
58 |
if isinstance(model, GPTNeoForCausalLM):
|
59 |
-
if block.attn.attention_type !=
|
60 |
continue
|
61 |
attn_module = block.attn.attention
|
62 |
elif isinstance(model, GPTNeoXForCausalLM):
|
@@ -65,17 +66,58 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
65 |
attn_module = block.attn
|
66 |
attn_modules.append(attn_module)
|
67 |
return attn_modules
|
68 |
-
setattr(model, '_original_forward', getattr(model, 'forward'))
|
69 |
-
setattr(model, '_original_generate', getattr(model, 'generate'))
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
"""Wraps original forward to enable PrefixLM attention."""
|
73 |
|
74 |
def call_og_forward():
|
75 |
if isinstance(self, GPTNeoXForCausalLM):
|
76 |
-
return self._original_forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
else:
|
78 |
-
return self._original_forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
if bidirectional_mask is None:
|
80 |
return call_og_forward()
|
81 |
assert isinstance(bidirectional_mask, torch.Tensor)
|
@@ -83,15 +125,24 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
83 |
(b, s) = bidirectional_mask.shape
|
84 |
max_length = attn_modules[0].bias.shape[-1]
|
85 |
if s > max_length:
|
86 |
-
raise ValueError(
|
|
|
|
|
|
|
87 |
assert s <= max_length
|
88 |
if s < max_length:
|
89 |
-
pad = torch.zeros(
|
|
|
|
|
|
|
|
|
90 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
91 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
92 |
for attn_module in attn_modules:
|
93 |
assert isinstance(attn_module.bias, torch.Tensor)
|
94 |
-
attn_module.bias.data = torch.logical_or(
|
|
|
|
|
95 |
output = call_og_forward()
|
96 |
for attn_module in attn_modules:
|
97 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
@@ -106,236 +157,18 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
106 |
for attn_module in attn_modules:
|
107 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
108 |
return output
|
109 |
-
setattr(model, 'forward', MethodType(forward, model))
|
110 |
-
setattr(model, 'generate', MethodType(generate, model))
|
111 |
-
setattr(model, '_prefix_lm_converted', True)
|
112 |
-
return model
|
113 |
-
|
114 |
-
def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
|
115 |
-
"""Converts a BLOOM Causal LM to a Prefix LM.
|
116 |
-
|
117 |
-
Supported HuggingFace model classes:
|
118 |
-
- `BloomForCausalLM`
|
119 |
|
120 |
-
|
121 |
-
""
|
122 |
-
|
123 |
-
return model
|
124 |
-
assert isinstance(model, BloomForCausalLM)
|
125 |
-
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
|
126 |
-
|
127 |
-
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
|
128 |
-
combined_attention_mask = None
|
129 |
-
device = attention_mask.device
|
130 |
-
(_, src_length) = input_shape
|
131 |
-
if src_length > 1:
|
132 |
-
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
|
133 |
-
if bidirectional_mask is not None:
|
134 |
-
assert attention_mask.shape == bidirectional_mask.shape
|
135 |
-
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
|
136 |
-
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
|
137 |
-
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
|
138 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
139 |
-
return combined_attention_mask
|
140 |
-
|
141 |
-
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
142 |
-
num_heads = self.config.n_head
|
143 |
-
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
144 |
-
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
145 |
-
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
|
146 |
-
slopes = torch.pow(base, powers)
|
147 |
-
if closest_power_of_2 != num_heads:
|
148 |
-
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
149 |
-
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
150 |
-
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
|
151 |
-
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
152 |
-
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
|
153 |
-
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
|
154 |
-
diffs = qa - ka + key_length - query_length
|
155 |
-
diffs = -diffs.abs()
|
156 |
-
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
|
157 |
-
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
|
158 |
-
return alibi.to(dtype)
|
159 |
-
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
160 |
-
|
161 |
-
def transformer_forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments: Any) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
162 |
-
if deprecated_arguments.pop('position_ids', False) is not False:
|
163 |
-
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
164 |
-
if len(deprecated_arguments) > 0:
|
165 |
-
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
166 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
167 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
168 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
169 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
170 |
-
if input_ids is not None and inputs_embeds is not None:
|
171 |
-
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
172 |
-
elif input_ids is not None:
|
173 |
-
(batch_size, seq_length) = input_ids.shape
|
174 |
-
elif inputs_embeds is not None:
|
175 |
-
(batch_size, seq_length, _) = inputs_embeds.shape
|
176 |
-
else:
|
177 |
-
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
178 |
-
if past_key_values is None:
|
179 |
-
past_key_values = tuple([None] * len(self.h))
|
180 |
-
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
181 |
-
if inputs_embeds is None:
|
182 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
183 |
-
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
184 |
-
presents = () if use_cache else None
|
185 |
-
all_self_attentions = () if output_attentions else None
|
186 |
-
all_hidden_states = () if output_hidden_states else None
|
187 |
-
seq_length_with_past = seq_length
|
188 |
-
past_key_values_length = 0
|
189 |
-
if past_key_values[0] is not None:
|
190 |
-
tmp = past_key_values[0][0]
|
191 |
-
past_key_values_length = tmp.shape[2]
|
192 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
193 |
-
if attention_mask is None:
|
194 |
-
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
195 |
-
else:
|
196 |
-
attention_mask = attention_mask.to(hidden_states.device)
|
197 |
-
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
|
198 |
-
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
|
199 |
-
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
|
200 |
-
if output_hidden_states:
|
201 |
-
hst = (hidden_states,)
|
202 |
-
all_hidden_states = all_hidden_states + hst
|
203 |
-
if self.gradient_checkpointing and self.training:
|
204 |
-
if use_cache:
|
205 |
-
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
206 |
-
use_cache = False
|
207 |
-
|
208 |
-
def create_custom_forward(module: torch.nn.Module):
|
209 |
-
|
210 |
-
def custom_forward(*inputs: Any):
|
211 |
-
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
212 |
-
return custom_forward
|
213 |
-
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
214 |
-
else:
|
215 |
-
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
|
216 |
-
hidden_states = outputs[0]
|
217 |
-
if use_cache is True:
|
218 |
-
presents = presents + (outputs[1],)
|
219 |
-
if output_attentions:
|
220 |
-
oa = (outputs[2 if use_cache else 1],)
|
221 |
-
all_self_attentions = all_self_attentions + oa
|
222 |
-
hidden_states = self.ln_f(hidden_states)
|
223 |
-
if output_hidden_states:
|
224 |
-
hst = (hidden_states,)
|
225 |
-
all_hidden_states = all_hidden_states + hst
|
226 |
-
if not return_dict:
|
227 |
-
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
|
228 |
-
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
229 |
-
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
230 |
-
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
231 |
-
setattr(model.transformer, 'forward', MethodType(transformer_forward, model.transformer))
|
232 |
-
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
233 |
-
|
234 |
-
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments: Any) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
235 |
-
"""Replacement forward method for BloomCausalLM."""
|
236 |
-
if deprecated_arguments.pop('position_ids', False) is not False:
|
237 |
-
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
238 |
-
if len(deprecated_arguments) > 0:
|
239 |
-
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
240 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
241 |
-
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
242 |
-
hidden_states = transformer_outputs[0]
|
243 |
-
lm_logits = self.lm_head(hidden_states)
|
244 |
-
loss = None
|
245 |
-
if labels is not None:
|
246 |
-
shift_logits = lm_logits[..., :-1, :].contiguous()
|
247 |
-
shift_labels = labels[..., 1:].contiguous()
|
248 |
-
(batch_size, seq_length, vocab_size) = shift_logits.shape
|
249 |
-
loss_fct = CrossEntropyLoss()
|
250 |
-
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
|
251 |
-
if not return_dict:
|
252 |
-
output = (lm_logits,) + transformer_outputs[1:]
|
253 |
-
return (loss,) + output if loss is not None else output
|
254 |
-
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
255 |
-
|
256 |
-
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs: Any) -> dict:
|
257 |
-
del kwargs
|
258 |
-
if past:
|
259 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
260 |
-
bidirectional_mask = None
|
261 |
-
if past[0][0].shape[0] == input_ids.shape[0]:
|
262 |
-
past = self._convert_to_bloom_cache(past)
|
263 |
-
else:
|
264 |
-
bidirectional_mask = torch.ones_like(input_ids)
|
265 |
-
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
|
266 |
-
setattr(model, 'forward', MethodType(forward, model))
|
267 |
-
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
|
268 |
-
setattr(model, '_prefix_lm_converted', True)
|
269 |
return model
|
270 |
|
271 |
-
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
|
272 |
-
"""Converts an OPT Causal LM to a Prefix LM.
|
273 |
|
274 |
-
|
275 |
-
|
|
|
|
|
276 |
|
277 |
-
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
278 |
-
"""
|
279 |
-
if hasattr(model, '_prefix_lm_converted'):
|
280 |
-
return model
|
281 |
-
assert isinstance(model, OPTForCausalLM)
|
282 |
-
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
|
283 |
-
setattr(model, '_original_forward', getattr(model, 'forward'))
|
284 |
-
setattr(model, '_original_generate', getattr(model, 'generate'))
|
285 |
-
model.model.decoder.bidirectional_mask = None
|
286 |
-
|
287 |
-
def _prepare_decoder_attention_mask(self: torch.nn.Module, attention_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], inputs_embeds: Optional[torch.Tensor], past_key_values_length: int):
|
288 |
-
combined_attention_mask = None
|
289 |
-
if input_shape[-1] > 1:
|
290 |
-
assert inputs_embeds is not None
|
291 |
-
if self.bidirectional_mask == 'g':
|
292 |
-
(bsz, src_length) = input_shape
|
293 |
-
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
294 |
-
else:
|
295 |
-
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
296 |
-
if self.bidirectional_mask is not None:
|
297 |
-
assert attention_mask is not None
|
298 |
-
assert attention_mask.shape == self.bidirectional_mask.shape
|
299 |
-
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
300 |
-
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
301 |
-
if attention_mask is not None:
|
302 |
-
assert inputs_embeds is not None
|
303 |
-
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
304 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
305 |
-
return combined_attention_mask
|
306 |
-
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
|
307 |
-
|
308 |
-
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
309 |
-
|
310 |
-
def call_og_forward():
|
311 |
-
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
312 |
-
if bidirectional_mask is None:
|
313 |
-
return call_og_forward()
|
314 |
-
self.model.decoder.bidirectional_mask = bidirectional_mask
|
315 |
-
try:
|
316 |
-
outputs = call_og_forward()
|
317 |
-
except:
|
318 |
-
self.model.decoder.bidirectional_mask = None
|
319 |
-
raise
|
320 |
-
self.model.decoder.bidirectional_mask = None
|
321 |
-
return outputs
|
322 |
-
|
323 |
-
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Any):
|
324 |
-
"""Wraps original generate to enable PrefixLM-style attention."""
|
325 |
-
self.model.decoder.bidirectional_mask = 'g'
|
326 |
-
try:
|
327 |
-
output = self._original_generate(*args, **kwargs)
|
328 |
-
except:
|
329 |
-
self.model.decoder.bidirectional_mask = None
|
330 |
-
raise
|
331 |
-
self.model.decoder.bidirectional_mask = None
|
332 |
-
return output
|
333 |
-
setattr(model, 'forward', MethodType(forward, model))
|
334 |
-
setattr(model, 'generate', MethodType(generate, model))
|
335 |
-
setattr(model, '_prefix_lm_converted', True)
|
336 |
-
return model
|
337 |
-
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
|
338 |
-
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
|
339 |
|
340 |
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
341 |
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
@@ -345,8 +178,6 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
|
|
345 |
- `GPTNeoForCausalLM`
|
346 |
- `GPTNeoXForCausalLM`
|
347 |
- `GPTJForCausalLM`
|
348 |
-
- `BloomForCausalLM`
|
349 |
-
- `OPTForCausalLM`
|
350 |
|
351 |
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
352 |
`generate` method and/or select underlying methods depending on the model class.
|
@@ -396,12 +227,13 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
|
|
396 |
"""
|
397 |
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
398 |
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
399 |
-
elif isinstance(model, BloomForCausalLM):
|
400 |
-
return _convert_bloom_causal_lm_to_prefix_lm(model)
|
401 |
-
elif isinstance(model, OPTForCausalLM):
|
402 |
-
return _convert_opt_causal_lm_to_prefix_lm(model)
|
403 |
else:
|
404 |
-
raise TypeError(
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
def add_bidirectional_mask_if_missing(batch: MutableMapping):
|
407 |
"""Attempts to add bidirectional_mask to batch if missing.
|
@@ -409,12 +241,16 @@ def add_bidirectional_mask_if_missing(batch: MutableMapping):
|
|
409 |
Raises:
|
410 |
KeyError if bidirectional_mask is missing and can't be inferred
|
411 |
"""
|
412 |
-
if
|
413 |
-
if batch.get(
|
414 |
-
batch[
|
415 |
-
for
|
416 |
-
batch[
|
417 |
-
elif
|
418 |
-
batch[
|
|
|
|
|
419 |
else:
|
420 |
-
raise KeyError(
|
|
|
|
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
|
|
|
|
9 |
from types import MethodType
|
10 |
from typing import Any, List, MutableMapping, Optional, Tuple, Union
|
11 |
import torch
|
|
|
|
|
|
|
|
|
12 |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
13 |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
14 |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
15 |
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
16 |
+
|
17 |
+
_SUPPORTED_GPT_MODELS = (
|
18 |
+
GPT2LMHeadModel,
|
19 |
+
GPTJForCausalLM,
|
20 |
+
GPTNeoForCausalLM,
|
21 |
+
GPTNeoXForCausalLM,
|
22 |
+
)
|
23 |
+
CAUSAL_GPT_TYPES = Union[
|
24 |
+
GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM
|
25 |
+
]
|
26 |
+
|
27 |
|
28 |
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
|
29 |
"""Converts a GPT-style Causal LM to a Prefix LM.
|
|
|
36 |
|
37 |
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
38 |
"""
|
39 |
+
if hasattr(model, "_prefix_lm_converted"):
|
40 |
return model
|
41 |
assert isinstance(model, _SUPPORTED_GPT_MODELS)
|
42 |
+
assert (
|
43 |
+
model.config.add_cross_attention == False
|
44 |
+
), "Only supports GPT-style decoder-only models"
|
45 |
|
46 |
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
|
47 |
"""Helper that gets a list of the model's attention modules.
|
|
|
57 |
blocks = model.transformer.h
|
58 |
for block in blocks:
|
59 |
if isinstance(model, GPTNeoForCausalLM):
|
60 |
+
if block.attn.attention_type != "global":
|
61 |
continue
|
62 |
attn_module = block.attn.attention
|
63 |
elif isinstance(model, GPTNeoXForCausalLM):
|
|
|
66 |
attn_module = block.attn
|
67 |
attn_modules.append(attn_module)
|
68 |
return attn_modules
|
|
|
|
|
69 |
|
70 |
+
setattr(model, "_original_forward", getattr(model, "forward"))
|
71 |
+
setattr(model, "_original_generate", getattr(model, "generate"))
|
72 |
+
|
73 |
+
def forward(
|
74 |
+
self: CAUSAL_GPT_TYPES,
|
75 |
+
input_ids: Optional[torch.LongTensor] = None,
|
76 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
77 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
78 |
+
bidirectional_mask: Optional[torch.Tensor] = None,
|
79 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
80 |
+
position_ids: Optional[torch.LongTensor] = None,
|
81 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
82 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
83 |
+
labels: Optional[torch.LongTensor] = None,
|
84 |
+
use_cache: Optional[bool] = None,
|
85 |
+
output_attentions: Optional[bool] = None,
|
86 |
+
output_hidden_states: Optional[bool] = None,
|
87 |
+
return_dict: Optional[bool] = None,
|
88 |
+
):
|
89 |
"""Wraps original forward to enable PrefixLM attention."""
|
90 |
|
91 |
def call_og_forward():
|
92 |
if isinstance(self, GPTNeoXForCausalLM):
|
93 |
+
return self._original_forward(
|
94 |
+
input_ids=input_ids,
|
95 |
+
past_key_values=past_key_values,
|
96 |
+
attention_mask=attention_mask,
|
97 |
+
head_mask=head_mask,
|
98 |
+
inputs_embeds=inputs_embeds,
|
99 |
+
labels=labels,
|
100 |
+
use_cache=use_cache,
|
101 |
+
output_attentions=output_attentions,
|
102 |
+
output_hidden_states=output_hidden_states,
|
103 |
+
return_dict=return_dict,
|
104 |
+
)
|
105 |
else:
|
106 |
+
return self._original_forward(
|
107 |
+
input_ids=input_ids,
|
108 |
+
past_key_values=past_key_values,
|
109 |
+
attention_mask=attention_mask,
|
110 |
+
token_type_ids=token_type_ids,
|
111 |
+
position_ids=position_ids,
|
112 |
+
head_mask=head_mask,
|
113 |
+
inputs_embeds=inputs_embeds,
|
114 |
+
labels=labels,
|
115 |
+
use_cache=use_cache,
|
116 |
+
output_attentions=output_attentions,
|
117 |
+
output_hidden_states=output_hidden_states,
|
118 |
+
return_dict=return_dict,
|
119 |
+
)
|
120 |
+
|
121 |
if bidirectional_mask is None:
|
122 |
return call_og_forward()
|
123 |
assert isinstance(bidirectional_mask, torch.Tensor)
|
|
|
125 |
(b, s) = bidirectional_mask.shape
|
126 |
max_length = attn_modules[0].bias.shape[-1]
|
127 |
if s > max_length:
|
128 |
+
raise ValueError(
|
129 |
+
f"bidirectional_mask sequence length (={s}) exceeds the "
|
130 |
+
+ f"max length allowed by the model ({max_length})."
|
131 |
+
)
|
132 |
assert s <= max_length
|
133 |
if s < max_length:
|
134 |
+
pad = torch.zeros(
|
135 |
+
(int(b), int(max_length - s)),
|
136 |
+
dtype=bidirectional_mask.dtype,
|
137 |
+
device=bidirectional_mask.device,
|
138 |
+
)
|
139 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
140 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
141 |
for attn_module in attn_modules:
|
142 |
assert isinstance(attn_module.bias, torch.Tensor)
|
143 |
+
attn_module.bias.data = torch.logical_or(
|
144 |
+
attn_module.bias.data, bidirectional
|
145 |
+
)
|
146 |
output = call_og_forward()
|
147 |
for attn_module in attn_modules:
|
148 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
|
|
157 |
for attn_module in attn_modules:
|
158 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
159 |
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
setattr(model, "forward", MethodType(forward, model))
|
162 |
+
setattr(model, "generate", MethodType(generate, model))
|
163 |
+
setattr(model, "_prefix_lm_converted", True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
return model
|
165 |
|
|
|
|
|
166 |
|
167 |
+
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS
|
168 |
+
CAUSAL_LM_TYPES = Union[
|
169 |
+
GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM
|
170 |
+
]
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
174 |
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
|
|
178 |
- `GPTNeoForCausalLM`
|
179 |
- `GPTNeoXForCausalLM`
|
180 |
- `GPTJForCausalLM`
|
|
|
|
|
181 |
|
182 |
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
183 |
`generate` method and/or select underlying methods depending on the model class.
|
|
|
227 |
"""
|
228 |
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
229 |
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
|
|
|
|
|
|
|
|
230 |
else:
|
231 |
+
raise TypeError(
|
232 |
+
f"Cannot convert model to Prefix LM. "
|
233 |
+
+ f"Model does not belong to set of supported HF models:"
|
234 |
+
+ f"\n{_SUPPORTED_HF_MODELS}"
|
235 |
+
)
|
236 |
+
|
237 |
|
238 |
def add_bidirectional_mask_if_missing(batch: MutableMapping):
|
239 |
"""Attempts to add bidirectional_mask to batch if missing.
|
|
|
241 |
Raises:
|
242 |
KeyError if bidirectional_mask is missing and can't be inferred
|
243 |
"""
|
244 |
+
if "bidirectional_mask" not in batch:
|
245 |
+
if batch.get("mode", None) == "icl_task":
|
246 |
+
batch["bidirectional_mask"] = batch["attention_mask"].clone()
|
247 |
+
for i, continuation_indices in enumerate(batch["continuation_indices"]):
|
248 |
+
batch["bidirectional_mask"][i, continuation_indices] = 0
|
249 |
+
elif "labels" in batch and "attention_mask" in batch:
|
250 |
+
batch["bidirectional_mask"] = torch.logical_and(
|
251 |
+
torch.eq(batch["attention_mask"], 1), torch.eq(batch["labels"], -100)
|
252 |
+
).type_as(batch["attention_mask"])
|
253 |
else:
|
254 |
+
raise KeyError(
|
255 |
+
"No bidirectional_mask in batch and not sure how to construct one."
|
256 |
+
)
|