|
from typing import Any |
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase |
|
|
|
NUM_SENTINEL_TOKENS: int = 100 |
|
|
|
|
|
def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None: |
|
"""Adds sentinel tokens and padding token (if missing). |
|
|
|
Expands the tokenizer vocabulary to include sentinel tokens |
|
used in mixture-of-denoiser tasks as well as a padding token. |
|
|
|
All added tokens are added as special tokens. No tokens are |
|
added if sentinel tokens and padding token already exist. |
|
""" |
|
sentinels_to_add = [f"<extra_id_{i}>" for i in range(NUM_SENTINEL_TOKENS)] |
|
tokenizer.add_tokens(sentinels_to_add, special_tokens=True) |
|
if tokenizer.pad_token is None: |
|
tokenizer.add_tokens("<pad>", special_tokens=True) |
|
tokenizer.pad_token = "<pad>" |
|
assert tokenizer.pad_token_id is not None |
|
sentinels = "".join([f"<extra_id_{i}>" for i in range(NUM_SENTINEL_TOKENS)]) |
|
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids |
|
tokenizer.sentinel_token_ids = _sentinel_token_ids |
|
|
|
|
|
class AutoTokenizerForMOD(AutoTokenizer): |
|
"""AutoTokenizer + Adaptation for MOD. |
|
|
|
A simple wrapper around AutoTokenizer to make instantiating |
|
an MOD-adapted tokenizer a bit easier. |
|
|
|
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>), |
|
a padding token, and a property to get the token ids of the |
|
sentinel tokens. |
|
""" |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args: Any, **kwargs: Any) -> PreTrainedTokenizerBase: |
|
"""See `AutoTokenizer.from_pretrained` docstring.""" |
|
tokenizer = super().from_pretrained(*args, **kwargs) |
|
adapt_tokenizer_for_denoising(tokenizer) |
|
return tokenizer |
|
|