|
"""A simple, flexible implementation of a GPT model. |
|
|
|
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py |
|
""" |
|
|
|
from __future__ import annotations |
|
import math |
|
import warnings |
|
from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .attention import is_flash_v1_installed, is_flash_v2_installed |
|
|
|
if is_flash_v2_installed(): |
|
try: |
|
from flash_attn import bert_padding |
|
from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding |
|
except Exception as e: |
|
raise e |
|
if is_flash_v1_installed(): |
|
try: |
|
from flash_attn import bert_padding |
|
except Exception as e: |
|
raise e |
|
from transformers import PreTrainedModel, PreTrainedTokenizerBase |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.models.llama.modeling_llama import ( |
|
LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding, |
|
) |
|
from transformers.models.llama.modeling_llama import ( |
|
LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding, |
|
) |
|
from transformers.models.llama.modeling_llama import ( |
|
LlamaRotaryEmbedding as HFRotaryEmbedding, |
|
) |
|
from .attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes |
|
from .blocks import MPTBlock |
|
from .custom_embedding import SharedEmbedding |
|
from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY |
|
from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY |
|
from .ffn import MPTMLP as MPTMLP |
|
from .ffn import build_ffn as build_ffn |
|
from .norm import NORM_CLASS_REGISTRY |
|
from .configuration_mpt import MPTConfig |
|
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising |
|
from .hf_prefixlm_converter import ( |
|
add_bidirectional_mask_if_missing, |
|
convert_hf_causal_lm_to_prefix_lm, |
|
) |
|
from .meta_init_context import init_empty_weights |
|
from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY |
|
|
|
try: |
|
from .flash_attn_triton import flash_attn_func as flash_attn_func |
|
except: |
|
pass |
|
import logging |
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
def gen_rotary_embedding( |
|
rope_head_dim: int, |
|
rope_impl: str, |
|
rope_theta: int, |
|
rope_dail_config: dict, |
|
rope_hf_config: dict, |
|
max_seq_len: int, |
|
): |
|
if rope_impl == "dail": |
|
return DAILRotaryEmbedding( |
|
dim=rope_head_dim, |
|
base=rope_theta, |
|
interleaved=False, |
|
scale_base=( |
|
rope_dail_config["xpos_scale_base"] |
|
if rope_dail_config["type"] == "xpos" |
|
else None |
|
), |
|
pos_idx_in_fp32=rope_dail_config["pos_idx_in_fp32"], |
|
device="cpu", |
|
) |
|
elif rope_impl == "hf": |
|
if rope_hf_config["type"] == "no_scaling": |
|
return HFRotaryEmbedding( |
|
rope_head_dim, |
|
max_position_embeddings=max_seq_len, |
|
base=rope_theta, |
|
device="cpu", |
|
) |
|
elif rope_hf_config["type"] == "linear": |
|
return HFLinearScalingRotaryEmbedding( |
|
rope_head_dim, |
|
max_position_embeddings=max_seq_len, |
|
base=rope_theta, |
|
scaling_factor=rope_hf_config["factor"], |
|
device="cpu", |
|
) |
|
elif rope_hf_config["type"] == "dynamic": |
|
return HFDynamicNTKScalingRotaryEmbedding( |
|
rope_head_dim, |
|
max_position_embeddings=max_seq_len, |
|
base=rope_theta, |
|
scaling_factor=rope_hf_config["factor"], |
|
device="cpu", |
|
) |
|
raise ValueError("rope_impl needs to be either dail or hf") |
|
|
|
|
|
def gen_attention_mask_in_length( |
|
sequence_id: Union[None, torch.Tensor], |
|
S: int, |
|
attn_uses_sequence_id: bool, |
|
attn_impl: str, |
|
attention_mask: Union[torch.Tensor, None], |
|
): |
|
"""Generates the attention mask used for sequence masking in FA v2. |
|
|
|
Only supports sequence id based sparse attention for no attention masking or attention masking with right padding. |
|
In case of left padding: |
|
1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407). |
|
2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention. |
|
|
|
Args: |
|
sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len). |
|
S (int): Sequence length |
|
attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking. |
|
attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention. |
|
attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len) |
|
|
|
Returns: |
|
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is: |
|
``` |
|
[ |
|
[2, 3, 0, 0, 0, 0], |
|
[3, 2, 0, 0, 0, 0], |
|
[6, 0, 0, 0, 0, 0] |
|
] |
|
``` |
|
, which refers to the 3D-attention mask: |
|
``` |
|
[ |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[0, 0, 1, 0, 0, 0], |
|
[0, 0, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 1] |
|
], |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0], |
|
[0, 0, 0, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 1] |
|
], |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 1, 0, 0], |
|
[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 1] |
|
] |
|
] |
|
```. |
|
(The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .) |
|
""" |
|
attention_mask_in_length = None |
|
if sequence_id is not None and attn_uses_sequence_id and (attn_impl == "flash"): |
|
if ( |
|
attention_mask is not None |
|
and attention_mask[:, 0].sum() != attention_mask.shape[0] |
|
): |
|
raise NotImplementedError( |
|
"Left padding is not supported with flash attention when attn_uses_sequence_id is set to True." |
|
) |
|
if S != sequence_id.shape[-1]: |
|
raise ValueError( |
|
f"Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]})." |
|
) |
|
if attention_mask is not None: |
|
sequence_id = sequence_id.masked_fill(~attention_mask, 0) |
|
attention_mask_in_length = torch.nn.functional.one_hot(sequence_id) |
|
if attention_mask is not None: |
|
attention_mask_in_length = attention_mask_in_length.masked_fill( |
|
~attention_mask.unsqueeze(-1), 0 |
|
) |
|
attention_mask_in_length = attention_mask_in_length.sum(dim=1) |
|
attention_mask_in_length = torch.nn.functional.pad( |
|
attention_mask_in_length, |
|
(0, S - attention_mask_in_length.shape[-1]), |
|
mode="constant", |
|
value=0, |
|
) |
|
return attention_mask_in_length |
|
|
|
|
|
def gen_flash_attn_padding_info( |
|
bsz: int, |
|
S: int, |
|
past_key_len: int, |
|
device: torch.device, |
|
attention_mask_in_length: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
flash_attn_padding_info = {} |
|
if attention_mask_in_length is None: |
|
key_padding_mask = attention_mask |
|
if key_padding_mask is None: |
|
key_padding_mask = torch.ones( |
|
(bsz, past_key_len + S), dtype=torch.bool, device=device |
|
) |
|
query_padding_mask = key_padding_mask[:, -S:] |
|
unpadding_function = bert_padding.unpad_input |
|
else: |
|
key_padding_mask = attention_mask_in_length |
|
query_padding_mask = attention_mask_in_length |
|
unpadding_function = bert_padding.unpad_input_for_concatenated_sequences |
|
(_, indices_q, cu_seqlens_q, max_seqlen_q) = unpadding_function( |
|
torch.empty(bsz, S, 1, device=device), query_padding_mask |
|
) |
|
(_, indices_k, cu_seqlens_k, max_seqlen_k) = unpadding_function( |
|
torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask |
|
) |
|
(_, indices_v, _, _) = unpadding_function( |
|
torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask |
|
) |
|
flash_attn_padding_info["indices_q"] = indices_q |
|
flash_attn_padding_info["indices_k"] = indices_k |
|
flash_attn_padding_info["indices_v"] = indices_v |
|
flash_attn_padding_info["cu_seqlens_q"] = cu_seqlens_q |
|
flash_attn_padding_info["cu_seqlens_k"] = cu_seqlens_k |
|
flash_attn_padding_info["max_seqlen_q"] = max_seqlen_q |
|
flash_attn_padding_info["max_seqlen_k"] = max_seqlen_k |
|
return flash_attn_padding_info |
|
|
|
|
|
def apply_sequence_id( |
|
attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int |
|
) -> torch.Tensor: |
|
seq_len = sequence_id.shape[-1] |
|
if seq_len > max_seq_len: |
|
raise ValueError( |
|
f"sequence_id sequence length cannot exceed max_seq_len={max_seq_len}" |
|
) |
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
cannot_attend = torch.logical_not( |
|
torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len)) |
|
).unsqueeze(1) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
return attn_bias |
|
|
|
|
|
class MPTPreTrainedModel(PreTrainedModel): |
|
config_class = MPTConfig |
|
base_model_prefix = "model" |
|
_no_split_modules = ["MPTBlock"] |
|
_supports_flash_attn_2 = True |
|
supports_gradient_checkpointing = True |
|
|
|
|
|
def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
class MPTModel(MPTPreTrainedModel): |
|
|
|
def __init__(self, config: MPTConfig): |
|
config._validate_config() |
|
super().__init__(config) |
|
self.gradient_checkpointing = False |
|
self.attn_impl = config.attn_config["attn_impl"] |
|
self.prefix_lm = config.attn_config["prefix_lm"] |
|
self.attn_uses_sequence_id = config.attn_config["attn_uses_sequence_id"] |
|
self.alibi = config.attn_config["alibi"] |
|
self.alibi_bias_max = config.attn_config["alibi_bias_max"] |
|
self.learned_pos_emb = config.learned_pos_emb |
|
if config.init_device == "mixed": |
|
if dist.get_local_rank() == 0: |
|
config.init_device = "cpu" |
|
else: |
|
config.init_device = "meta" |
|
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): |
|
norm_options = " | ".join(NORM_CLASS_REGISTRY.keys()) |
|
raise NotImplementedError( |
|
f"Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options})." |
|
) |
|
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] |
|
self.embedding_fraction = config.embedding_fraction |
|
self.wte = SharedEmbedding( |
|
config.vocab_size, config.d_model, device=config.init_device |
|
) |
|
if self.learned_pos_emb: |
|
self.wpe = torch.nn.Embedding( |
|
config.max_seq_len, config.d_model, device=config.init_device |
|
) |
|
self.emb_drop = nn.Dropout(config.emb_pdrop) |
|
self.blocks = nn.ModuleList( |
|
[ |
|
MPTBlock(device=config.init_device, **config.to_dict()) |
|
for _ in range(config.n_layers) |
|
] |
|
) |
|
self.norm_f = norm_class(config.d_model, device=config.init_device) |
|
self.rope = config.attn_config["rope"] |
|
self.rope_impl = None |
|
if self.rope: |
|
self.rope_impl = config.attn_config["rope_impl"] |
|
self.rotary_embedding = gen_rotary_embedding( |
|
rope_head_dim=config.d_model // config.n_heads, |
|
rope_impl=self.rope_impl, |
|
rope_theta=config.attn_config["rope_theta"], |
|
rope_dail_config=config.attn_config["rope_dail_config"], |
|
rope_hf_config=config.attn_config["rope_hf_config"], |
|
max_seq_len=self.config.max_seq_len, |
|
) |
|
if config.init_device != "meta": |
|
log.info( |
|
f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.' |
|
) |
|
self.apply(self.param_init_fn) |
|
self.is_causal = not self.prefix_lm |
|
self._attn_bias_initialized = False |
|
self.attn_bias = None |
|
self.attn_bias_shape = attn_bias_shape( |
|
self.attn_impl, |
|
config.n_heads, |
|
config.max_seq_len, |
|
self.alibi, |
|
prefix_lm=self.prefix_lm, |
|
causal=self.is_causal, |
|
use_sequence_id=self.attn_uses_sequence_id, |
|
) |
|
if config.no_bias: |
|
for module in self.modules(): |
|
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter): |
|
log.info(f"Removing bias from module={module!r}.") |
|
module.register_parameter("bias", None) |
|
if hasattr(module, "use_bias"): |
|
log.info(f"Setting use_bias=False for module={module!r}.") |
|
module.use_bias = False |
|
log.debug(self) |
|
log.debug(f"Using {self.config.init_config['name']} initialization.") |
|
|
|
def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: |
|
return self.wte |
|
|
|
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: |
|
self.wte = value |
|
|
|
@torch.no_grad() |
|
def _attn_bias( |
|
self, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]: |
|
if not self._attn_bias_initialized: |
|
if self.attn_bias_shape: |
|
self.attn_bias = torch.zeros( |
|
self.attn_bias_shape, device=device, dtype=dtype |
|
) |
|
self.attn_bias = build_attn_bias( |
|
self.attn_impl, |
|
self.attn_bias, |
|
self.config.n_heads, |
|
self.config.max_seq_len, |
|
causal=self.is_causal, |
|
alibi=self.alibi, |
|
alibi_bias_max=self.alibi_bias_max, |
|
) |
|
self._attn_bias_initialized = True |
|
if self.attn_impl == "flash": |
|
return (self.attn_bias, attention_mask) |
|
if self.attn_bias is not None: |
|
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) |
|
attn_bias = self.attn_bias |
|
if self.prefix_lm: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
assert isinstance(prefix_mask, torch.Tensor) |
|
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) |
|
if self.attn_uses_sequence_id and sequence_id is not None: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
attn_bias = apply_sequence_id( |
|
attn_bias, sequence_id, self.config.max_seq_len |
|
) |
|
if attention_mask is not None: |
|
s_k = attention_mask.shape[-1] |
|
if attn_bias is None: |
|
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) |
|
else: |
|
_s_k = max(0, attn_bias.size(-1) - s_k) |
|
attn_bias = attn_bias[:, :, :, _s_k:] |
|
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: |
|
raise ValueError( |
|
f"attention_mask shape={attention_mask.shape} " |
|
+ f"and prefix_mask shape={prefix_mask.shape} are not equal." |
|
) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill( |
|
~attention_mask.view(-1, 1, 1, s_k), min_val |
|
) |
|
return (attn_bias, attention_mask) |
|
|
|
def _apply_prefix_mask( |
|
self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor |
|
) -> torch.Tensor: |
|
(s_k, s_q) = attn_bias.shape[-2:] |
|
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: |
|
raise ValueError( |
|
"attn_bias does not match the expected shape. " |
|
+ f"The last two dimensions should both be {self.config.max_length} " |
|
+ f"but are {s_k} and {s_q}." |
|
) |
|
seq_len = prefix_mask.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f"prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}" |
|
) |
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
causal = torch.tril( |
|
torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device) |
|
).view(1, 1, seq_len, seq_len) |
|
prefix = prefix_mask.view(-1, 1, 1, seq_len) |
|
cannot_attend = ~torch.logical_or(causal, prefix.bool()) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
return attn_bias |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> BaseModelOutputWithPast: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.return_dict |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.bool() |
|
if prefix_mask is not None: |
|
prefix_mask = prefix_mask.bool() |
|
if not return_dict: |
|
raise NotImplementedError( |
|
"return_dict False is not implemented yet for MPT" |
|
) |
|
if output_attentions: |
|
if self.attn_impl != "torch": |
|
raise NotImplementedError( |
|
"output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`." |
|
) |
|
if ( |
|
self.training |
|
and attention_mask is not None |
|
and (attention_mask[:, 0].sum() != attention_mask.shape[0]) |
|
): |
|
raise NotImplementedError( |
|
"MPT does not support training with left padding." |
|
) |
|
if self.prefix_lm and prefix_mask is None: |
|
raise ValueError( |
|
"prefix_mask is a required argument when MPT is configured with prefix_lm=True." |
|
) |
|
if self.training: |
|
if self.attn_uses_sequence_id and sequence_id is None: |
|
raise ValueError( |
|
"sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True " |
|
+ "and the model is in train mode." |
|
) |
|
elif self.attn_uses_sequence_id is False and sequence_id is not None: |
|
warnings.warn( |
|
"MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. " |
|
+ "This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True." |
|
) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
warnings.warn( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds.") |
|
elif input_ids is not None: |
|
bsz = input_ids.size(0) |
|
S = input_ids.size(1) |
|
x = self.wte(input_ids) |
|
input_device = input_ids.device |
|
elif inputs_embeds is not None: |
|
bsz = inputs_embeds.size(0) |
|
S = inputs_embeds.size(1) |
|
x = inputs_embeds |
|
input_device = inputs_embeds.device |
|
else: |
|
raise ValueError("You must specify input_ids or inputs_embeds") |
|
assert ( |
|
S <= self.config.max_seq_len |
|
), f"Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}" |
|
rotary_emb_w_meta_info = None |
|
past_position = 0 |
|
if past_key_values is not None: |
|
if len(past_key_values) != self.config.n_layers: |
|
raise ValueError( |
|
f"past_key_values must provide a past_key_value for each attention " |
|
+ f"layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r})." |
|
) |
|
past_position = past_key_values[0][0].size(1) |
|
if self.attn_impl == "torch": |
|
past_position = past_key_values[0][0].size(3) |
|
if self.learned_pos_emb or self.rope: |
|
if self.learned_pos_emb and S + past_position > self.config.max_seq_len: |
|
raise ValueError( |
|
f"Cannot forward input with past sequence length {past_position} and current sequence length " |
|
+ f"{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}." |
|
) |
|
if self.learned_pos_emb or (self.rope and self.rope_impl == "hf"): |
|
pos = torch.arange( |
|
past_position, |
|
S + past_position, |
|
dtype=torch.long, |
|
device=input_device, |
|
).unsqueeze(0) |
|
if attention_mask is not None: |
|
pos = torch.clamp( |
|
pos |
|
- torch.cumsum((~attention_mask).to(torch.int32), dim=1)[ |
|
:, past_position: |
|
], |
|
min=0, |
|
) |
|
if self.learned_pos_emb: |
|
x = x + self.wpe(pos) |
|
elif self.rope and self.rope_impl == "hf": |
|
rotary_emb_w_meta_info = { |
|
"impl": self.rope_impl, |
|
"rotary_emb": self.rotary_embedding, |
|
"offset_info": pos, |
|
"seq_len": S + past_position, |
|
} |
|
elif self.rope and self.rope_impl == "dail": |
|
rotary_emb_w_meta_info = { |
|
"impl": self.rope_impl, |
|
"rotary_emb": self.rotary_embedding, |
|
"offset_info": past_position, |
|
"seq_len": S + past_position, |
|
} |
|
if self.embedding_fraction == 1: |
|
x = self.emb_drop(x) |
|
else: |
|
x_shrunk = x * self.embedding_fraction + x.detach() * ( |
|
1 - self.embedding_fraction |
|
) |
|
assert isinstance(self.emb_drop, nn.Module) |
|
x = self.emb_drop(x_shrunk) |
|
(attn_bias, attention_mask) = self._attn_bias( |
|
device=x.device, |
|
dtype=torch.float32, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
) |
|
attention_mask_in_length = gen_attention_mask_in_length( |
|
sequence_id=sequence_id, |
|
S=S, |
|
attn_uses_sequence_id=self.attn_uses_sequence_id, |
|
attn_impl=self.attn_impl, |
|
attention_mask=attention_mask, |
|
) |
|
alibi_slopes = None |
|
if self.alibi and self.attn_impl == "flash": |
|
alibi_slopes = gen_slopes( |
|
n_heads=self.config.n_heads, |
|
alibi_bias_max=self.alibi_bias_max, |
|
device=x.device, |
|
return_1d=True, |
|
) |
|
presents = () if use_cache else None |
|
if use_cache and past_key_values is None: |
|
past_key_values = [() for _ in range(self.config.n_layers)] |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
flash_attn_padding_info = {} |
|
if self.attn_impl == "flash": |
|
flash_attn_padding_info = gen_flash_attn_padding_info( |
|
bsz, |
|
S, |
|
past_position, |
|
x.device, |
|
attention_mask_in_length, |
|
attention_mask, |
|
) |
|
for b_idx, block in enumerate(self.blocks): |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
past_key_value = ( |
|
past_key_values[b_idx] if past_key_values is not None else None |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
(x, attn_weights, present) = self._gradient_checkpointing_func( |
|
block.__call__, |
|
x, |
|
past_key_value, |
|
attn_bias, |
|
rotary_emb_w_meta_info, |
|
attention_mask, |
|
self.is_causal, |
|
bool(output_attentions), |
|
alibi_slopes, |
|
flash_attn_padding_info, |
|
) |
|
else: |
|
(x, attn_weights, present) = block( |
|
x, |
|
past_key_value=past_key_value, |
|
attn_bias=attn_bias, |
|
rotary_emb_w_meta_info=rotary_emb_w_meta_info, |
|
attention_mask=attention_mask, |
|
is_causal=self.is_causal, |
|
output_attentions=bool(output_attentions), |
|
alibi_slopes=alibi_slopes, |
|
flash_attn_padding_info=flash_attn_padding_info, |
|
) |
|
if presents is not None: |
|
presents += (present,) |
|
if output_attentions: |
|
assert all_self_attns is not None |
|
all_self_attns = all_self_attns + (attn_weights,) |
|
x = self.norm_f(x) |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=x, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def param_init_fn(self, module: nn.Module) -> None: |
|
init_fn_name = self.config.init_config["name"] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
def fsdp_wrap_fn(self, module: nn.Module) -> bool: |
|
return _fsdp_wrap_fn(self, module) |
|
|
|
def activation_checkpointing_fn(self, module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
class MPTForCausalLM(MPTPreTrainedModel): |
|
|
|
def __init__(self, config: MPTConfig): |
|
super().__init__(config) |
|
log.info(f"Instantiating an MPTForCausalLM model from {__file__}") |
|
self.transformer: MPTModel = MPTModel(config) |
|
self.lm_head = None |
|
if not config.tie_word_embeddings: |
|
self.lm_head = nn.Linear( |
|
config.d_model, config.vocab_size, bias=False, device=config.init_device |
|
) |
|
self.lm_head._fsdp_wrap = True |
|
for child in self.transformer.children(): |
|
if isinstance(child, torch.nn.ModuleList): |
|
continue |
|
if isinstance(child, torch.nn.Module): |
|
child._fsdp_wrap = True |
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == "inv_sqrt_d_model": |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError( |
|
f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." |
|
) |
|
self.logit_scale = logit_scale |
|
|
|
def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: |
|
return self.transformer.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: |
|
self.transformer.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]: |
|
if self.lm_head is not None: |
|
return self.lm_head |
|
return self.transformer.get_input_embeddings() |
|
|
|
def set_output_embeddings( |
|
self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear] |
|
) -> None: |
|
if self.lm_head is not None: |
|
self.lm_head = new_embeddings |
|
else: |
|
if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)): |
|
raise ValueError( |
|
"new_embeddings must be an instance of SharedEmbedding " |
|
+ f"or nn.Embedding, but got {type(new_embeddings)}." |
|
) |
|
warnings.warn( |
|
"Using `set_output_embeddings` to set the embedding layer of " |
|
+ "MPTForCausalLM with tied weights. Given weights are tied, " |
|
+ "using `set_input_embeddings` is recommended over using " |
|
+ "`set_output_embeddings`." |
|
) |
|
self.transformer.set_input_embeddings(new_embeddings) |
|
|
|
def tie_weights(self) -> None: |
|
self.lm_head = None |
|
|
|
def set_decoder(self, decoder: MPTModel) -> None: |
|
self.transformer = decoder |
|
|
|
def get_decoder(self) -> MPTModel: |
|
return self.transformer |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
) -> CausalLMOutputWithPast: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.return_dict |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
outputs = self.transformer( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
return_dict=return_dict, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=use_cache, |
|
inputs_embeds=inputs_embeds, |
|
) |
|
if self.lm_head is not None: |
|
logits = self.lm_head(outputs.last_hidden_state) |
|
else: |
|
out = outputs.last_hidden_state |
|
out = out.to(self.transformer.wte.weight.device) |
|
logits = self.transformer.wte(out, True) |
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn( |
|
f"Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs." |
|
) |
|
logits *= self.logit_scale |
|
loss = None |
|
if labels is not None: |
|
_labels = torch.roll(labels, shifts=-1) |
|
_labels[:, -1] = -100 |
|
loss = F.cross_entropy( |
|
logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1) |
|
) |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def param_init_fn(self, module: nn.Module) -> None: |
|
init_fn_name = self.config.init_config["name"] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
def fsdp_wrap_fn(self, module: nn.Module) -> bool: |
|
return _fsdp_wrap_fn(self, module) |
|
|
|
def activation_checkpointing_fn(self, module: nn.Module) -> bool: |
|
act_ckpt_list = getattr( |
|
self.config, "activation_checkpointing_target", None |
|
) or ["MPTBlock"] |
|
if isinstance(act_ckpt_list, str): |
|
act_ckpt_list = [act_ckpt_list] |
|
elif not isinstance(act_ckpt_list, list): |
|
raise ValueError( |
|
f"activation_checkpointing_target must be either a single string or a list, but got {type(act_ckpt_list)}" |
|
) |
|
if "MPTBlock" in act_ckpt_list or "mptblock" in act_ckpt_list: |
|
if len(act_ckpt_list) > 1: |
|
log.info( |
|
"Activation checkpointing MPTBlock only (ignoring other sub-block modules specified in activation_checkpointing_target)." |
|
) |
|
return isinstance(module, MPTBlock) |
|
mod_types = () |
|
for mod_name in act_ckpt_list: |
|
if mod_name.lower() == "mptblock": |
|
mod_types += (MPTBlock,) |
|
elif mod_name in ATTN_CLASS_REGISTRY: |
|
mod_types += (ATTN_CLASS_REGISTRY[mod_name],) |
|
elif mod_name in FFN_CLASS_REGISTRY: |
|
mod_types += (FFN_CLASS_REGISTRY[mod_name],) |
|
elif mod_name in NORM_CLASS_REGISTRY: |
|
mod_types += (NORM_CLASS_REGISTRY[mod_name],) |
|
else: |
|
msg = ", ".join( |
|
list(ATTN_CLASS_REGISTRY.keys()) |
|
+ list(FFN_CLASS_REGISTRY.keys()) |
|
+ list(NORM_CLASS_REGISTRY.keys()) |
|
+ ["MPTBlock"] |
|
) |
|
raise ValueError( |
|
f"{mod_name} (specified in activation_checkpointing_target) is not a recognized option out of available options {msg}." |
|
) |
|
return isinstance(module, mod_types) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
**kwargs: Any, |
|
) -> Dict[str, Any]: |
|
attention_mask = kwargs["attention_mask"].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError( |
|
"MPT does not support generation with right padding." |
|
) |
|
if self.transformer.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if self.transformer.prefix_lm: |
|
prefix_mask = torch.ones_like(attention_mask) |
|
if kwargs.get("use_cache") == False: |
|
raise NotImplementedError( |
|
"MPT with prefix_lm=True does not support use_cache=False." |
|
) |
|
else: |
|
prefix_mask = None |
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
model_inputs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"prefix_mask": prefix_mask, |
|
"sequence_id": sequence_id, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache", True), |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], |
|
beam_idx: torch.LongTensor, |
|
) -> List[Tuple[torch.Tensor, ...]]: |
|
"""Used by HuggingFace generate when using beam search with kv-caching. |
|
|
|
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 |
|
for an example in transformers. |
|
""" |
|
reordered_past = [] |
|
for layer_past in past_key_values: |
|
reordered_past += [ |
|
tuple( |
|
(past_state.index_select(0, beam_idx) for past_state in layer_past) |
|
) |
|
] |
|
return reordered_past |
|
|