weiqipedia commited on
Commit
14b752c
1 Parent(s): 6960d2c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -46
README.md CHANGED
@@ -1,12 +1,14 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
4
- # SEA-LION-Instruct-NC
5
 
6
  SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
7
  The size of the models range from 3 billion to 7 billion parameters.
8
  This is the card for the SEA-LION 7B Instruct (Non-Commercial) model.
9
 
 
 
10
  SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.
11
 
12
 
@@ -21,64 +23,39 @@ SEA-LION is built on the robust MPT architecture and has a vocabulary size of 25
21
 
22
  For tokenization, the model employs our custom SEABPETokenizer, which is specially tailored for SEA languages, ensuring optimal model performance.
23
 
24
- The training data for SEA-LION encompasses 980B tokens.
 
25
 
26
  - **Developed by:** Products Pillar, AI Singapore
27
  - **Funded by:** Singapore NRF
28
  - **Model type:** Decoder
29
  - **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
30
- - **License:** MIT License
31
-
32
-
33
- ## Training Details
34
 
35
- ### Data
36
 
37
- SEA-LION was trained on 980B tokens of the following data:
38
 
39
- | Data Source | Tokens | Percentage |
40
- |---------------------------|-------:|:----------:|
41
- | RefinedWeb - English | 571.3B | 58.20% |
42
- | mC4 - Chinese | 91.2B | 9.29% |
43
- | mC4 - Indonesian | 14.7B | 1.50% |
44
- | mC4 - Malay | 2.9B | 0.29% |
45
- | mC4 - Filipino | 5.3B | 0.54% |
46
- | mC4 - Burmese | 4.9B | 0.49% |
47
- | mC4 - Vietnamese | 63.4B | 6.46% |
48
- | mC4 - Thai | 21.6B | 2.20% |
49
- | mC4 - Lao | 1.1B | 0.12% |
50
- | mC4 - Khmer | 3.9B | 0.40% |
51
- | mC4 - Tamil | 10.2B | 1.04% |
52
- | the Stack - Python | 41.8B | 4.26% |
53
- | the Stack - Javascript | 55.6B | 5.66% |
54
- | the Stack - Shell | 2.5B | 0.26% |
55
- | the Stack - SQL | 12.8B | 1.31% |
56
- | the Stack - Markdown | 26.6B | 2.71% |
57
- | RedPajama - StackExchange | 21.2B | 2.16% |
58
- | RedPajama - ArXiv | 30.6B | 3.12% |
59
 
60
- ### Infrastructure
61
 
62
- SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
63
- on the following hardware:
64
 
65
- | Training Details | SEA-LION 7B |
66
- |----------------------|:------------:|
67
- | AWS EC2 p4d.24xlarge | 32 instances |
68
- | Nvidia A100 40GB GPU | 256 |
69
- | Training Duration | 22 days |
70
 
 
71
 
72
- ### Configuration
73
 
74
- | HyperParameter | SEA-LION 7B |
75
- |-------------------|:------------------:|
76
- | Precision | bfloat16 |
77
- | Optimizer | decoupled_adamw |
78
- | Scheduler | cosine_with_warmup |
79
- | Learning Rate | 6.0e-5 |
80
- | Global Batch Size | 2048 |
81
- | Micro Batch Size | 4 |
82
 
83
 
84
  ## Technical Specifications
@@ -102,6 +79,27 @@ We sample 20M lines from the training data to train the tokenizer.<br>
102
  The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
103
  The tokenizer type is Byte-Pair Encoding (BPE).
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
 
107
  ## The Team
@@ -139,7 +137,7 @@ For more info, please contact us at [email protected]
139
 
140
  ## Disclaimer
141
 
142
- This the repository for the base model.
143
  The model has _not_ been aligned for safety.
144
  Developers and users should perform their own safety fine-tuning and related security measures.
145
  In no event shall the authors be held liable for any claim, damages, or other liability
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
4
+ # SEA-LION-7B-Instruct-NC
5
 
6
  SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
7
  The size of the models range from 3 billion to 7 billion parameters.
8
  This is the card for the SEA-LION 7B Instruct (Non-Commercial) model.
9
 
10
+ For more details on the base model, please refer to the [base model's model card](https://huggingface.co/aisingapore/sealion7b).
11
+
12
  SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.
13
 
14
 
 
23
 
24
  For tokenization, the model employs our custom SEABPETokenizer, which is specially tailored for SEA languages, ensuring optimal model performance.
25
 
26
+ The pre-training data for the base SEA-LION model encompasses 980B tokens.
27
+ The model was then further instruction-tuned on <b>Indonesian data only</b>.
28
 
29
  - **Developed by:** Products Pillar, AI Singapore
30
  - **Funded by:** Singapore NRF
31
  - **Model type:** Decoder
32
  - **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
33
+ - **License:** CC BY-NC-SA 4.0 License
 
 
 
34
 
35
+ ### Benchmark Performance
36
 
37
+ SEA-LION-7B-Instruct-NC performs better than other models of comparable size when tested on tasks in the Indonesian language.
38
 
39
+ We evaluated SEA-LION-7B-Instruct-NC on the [BHASA benchmark](https://arxiv.org/abs/2309.06085) and
40
+ compared it against [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
41
+ and [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b-instruct).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ We only evaluated it on the Indonesian tasks as the model was only instruction-tuned in Indonesian.
44
 
45
+ The scores shown in the tables below have been adjusted to only consider answers provided in the appropriate language.
 
46
 
47
+ For Natural Language Understanding (NLU) tasks, we tested the model on Sentiment Analysis (Sent) using the NusaX dataset, Question Answering (QA) using the TyDiQA dataset, and Toxicity Detection (Tox) using the Indonesian Multi-Label Hate Speech Detection dataset. The metrics used are F1 score for all three tasks.
 
 
 
 
48
 
49
+ For Natural Language Generation (NLG) tasks, we tested the model on Machine Translation from English to Indonesian (MT-EN-ID) and from Indonesian to English (MT-ID-EN) using the FLORES-200 dataset, and Abstractive Summarization (AbsSum) using the XLSum dataset. The metrics used for Machine Translation are ChrF++ and COMET22, and ROUGE-L is used for Abstractive Summarization.
50
 
51
+ For Natural Language Reasoning (NLR) tasks, we tested the model on Natural Language Inference (NLI) using the IndoNLI lay dataset and on Causal Reasoning (Causal) using the XCOPA dataset. The metrics are accuracy for both tasks.
52
 
53
+ | Model Name | Sent (F1) | QA (F1) | Tox (F1) | MT-EN-ID (ChrF++)| (COMET22)| MT-ID-EN (ChrF++)| (COMET22)| AbsSum (ROUGE-L)| NLI (Acc) | Causal (Acc) |
54
+ |--------------------------|-----------|----------|----------|------------------|----------|------------------|----------|-----------------|-----------|-------------|
55
+ | sealion7b-instruct-nc | **76.13** | 24.86 | **24.45**| **52.50** | **86.97**| 46.82 | 81.34 | **15.44** | **33.20** | **23.80** |
56
+ | Mistral-7B-Instruct-v0.1 | 73.66 | **26.08**| 18.60 | 31.08 | 55.29 | 51.20 | 82.38 | 14.41 | 29.20 | 11.00 |
57
+ | Llama-2-7b-chat-hf | 41.92 | 4.23 | 0.00 | 47.96 | 77.86 | **55.76** | **86.08**| 4.59 | 0.00 | 0.00 |
58
+ | falcon-7b-instruct | 0.00 | 8.47 | 7.21 | 1.66 | 30.07 | 16.82 | 46.32 | 1.55 | 0.00 | 2.20 |
 
 
59
 
60
 
61
  ## Technical Specifications
 
79
  The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
80
  The tokenizer type is Byte-Pair Encoding (BPE).
81
 
82
+ ### Example Usage
83
+
84
+ ```python
85
+ # Please use transformers==4.34.1
86
+
87
+ from transformers import AutoModelForCausalLM, AutoTokenizer
88
+
89
+ tokenizer = AutoTokenizer.from_pretrained("aisingapore/sealion7b-instruct-nc", trust_remote_code=True)
90
+ model = AutoModelForCausalLM.from_pretrained("aisingapore/sealion7b-instruct-nc", trust_remote_code=True)
91
+
92
+ prompt_template = "### USER:\n{human_prompt}\n\n### RESPONSE:\n"
93
+ prompt = """Apa sentimen dari kalimat berikut ini?
94
+ Kalimat: Buku ini sangat membosankan.
95
+ Jawaban: """
96
+ full_prompt = prompt_template.format(human_prompt=prompt)
97
+
98
+ tokens = tokenizer(full_prompt, return_tensors="pt")
99
+ output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id)
100
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
101
+
102
+ ```
103
 
104
 
105
  ## The Team
 
137
 
138
  ## Disclaimer
139
 
140
+ This the repository for the non-commercial instruction-tuned model.
141
  The model has _not_ been aligned for safety.
142
  Developers and users should perform their own safety fine-tuning and related security measures.
143
  In no event shall the authors be held liable for any claim, damages, or other liability