update with SEA-LION 7B details
Browse files
README.md
CHANGED
@@ -1,3 +1,132 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SEA-LION
|
2 |
+
|
3 |
+
SEA-LION is a collection of LLMs which has been pretrained and instruct-tuned for the South-East Asia (SEA) region.
|
4 |
+
The models range from 3 billion to 7 billion parameters.
|
5 |
+
This is the card for the SEA-LION 7B model.
|
6 |
+
|
7 |
+
SEA-LION stands for <i>South-East Asia Languages In One Network</i>.
|
8 |
+
|
9 |
+
|
10 |
+
## Model Details
|
11 |
+
|
12 |
+
### Model Description
|
13 |
+
|
14 |
+
The SEA-LION model is a significant leap forward in the field of natural language processing and understanding,
|
15 |
+
specifically trained to understand South-East Asia (SEA) regional context.
|
16 |
+
|
17 |
+
SEA-LION is built on the robust MPT architecture and utilize a vocabulary size of 256K.
|
18 |
+
|
19 |
+
The model employs our proprietary SEABPETokenizer for tokenization.
|
20 |
+
Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.
|
21 |
+
|
22 |
+
The training data for SEA-LION encompasses 980B tokens.
|
23 |
+
|
24 |
+
- **Developed by:** Products Pillar, AI Singapore
|
25 |
+
- **Funded by:** Singapore NRF
|
26 |
+
- **Model type:** Decoder
|
27 |
+
- **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
|
28 |
+
- **License:** MIT License
|
29 |
+
|
30 |
+
|
31 |
+
## Training Details
|
32 |
+
|
33 |
+
### Data
|
34 |
+
|
35 |
+
SEA-LION was trained on 980B tokens of the following data:
|
36 |
+
|
37 |
+
| Data Source | Tokens | Percentage |
|
38 |
+
|---------------------------|-------:|:----------:|
|
39 |
+
| RefinedWeb - English | 571.3B | 62.80% |
|
40 |
+
| mC4 - Chinese | 91.2B | 10.03% |
|
41 |
+
| mC4 - Indonesian | 3.6B | 0.40% |
|
42 |
+
| mC4 - Malay | 0.7B | 0.08% |
|
43 |
+
| mC4 - Filipino | 1.3B | 0.15% |
|
44 |
+
| mC4 - Burmese | 1.2B | 0.13% |
|
45 |
+
| mC4 - Vietnamese | 63.4B | 6.97% |
|
46 |
+
| mC4 - Thai | 10.8B | 1.19% |
|
47 |
+
| mC4 - Lao | 0.3B | 0.03% |
|
48 |
+
| mC4 - Khmer | 0.9B | 0.11% |
|
49 |
+
| mC4 - Tamil | 2.5B | 0.28% |
|
50 |
+
| the Stack - Python | 20.9B | 2.30% |
|
51 |
+
| the Stack - Javascript | 55.6B | 6.11% |
|
52 |
+
| the Stack - Shell | 1.3B | 0.14% |
|
53 |
+
| the Stack - SQL | 6.4B | 0.70% |
|
54 |
+
| the Stack - Markdown | 26.6B | 2.91% |
|
55 |
+
| RedPajama - StackExchange | 21.2B | 2.33% |
|
56 |
+
| RedPajama - ArXiv | 30.6B | 3.35% |
|
57 |
+
|
58 |
+
|
59 |
+
### Infrastructure
|
60 |
+
|
61 |
+
SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
|
62 |
+
on the following hardware:
|
63 |
+
|
64 |
+
| Training Details | SEA-LION 7B |
|
65 |
+
|----------------------|:------------:|
|
66 |
+
| AWS EC2 p4d.24xlarge | 32 instances |
|
67 |
+
| Nvidia A100 40GB GPU | 256 |
|
68 |
+
| Training Duration | 22 days |
|
69 |
+
|
70 |
+
|
71 |
+
### Configuration
|
72 |
+
|
73 |
+
| HyperParameter | SEA-LION 7B |
|
74 |
+
|-------------------|:------------------:|
|
75 |
+
| Precision | bfloat16 |
|
76 |
+
| Optimizer | decoupled_adamw |
|
77 |
+
| Scheduler | cosine_with_warmup |
|
78 |
+
| Learning Rate | 6.0e-5 |
|
79 |
+
| Global Batch Size | 2048 |
|
80 |
+
| Micro Batch Size | 4 |
|
81 |
+
|
82 |
+
|
83 |
+
## Technical Specifications
|
84 |
+
|
85 |
+
### Model Architecture and Objective
|
86 |
+
|
87 |
+
SEA-LION is a decoder model using the MPT architecture.
|
88 |
+
|
89 |
+
| Parameter | SEA-LION 7B |
|
90 |
+
|-----------------|:-----------:|
|
91 |
+
| Layers | 32 |
|
92 |
+
| d_model | 4096 |
|
93 |
+
| head_dim | 32 |
|
94 |
+
| Vocabulary | 256000 |
|
95 |
+
| Sequence Length | 2048 |
|
96 |
+
|
97 |
+
|
98 |
+
### Tokenizer Details
|
99 |
+
|
100 |
+
We sample 20M lines from the training data to train the tokenizer.<br>
|
101 |
+
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
|
102 |
+
The tokenizer type is Byte-Pair Encoding (BPE).
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
## The Team
|
107 |
+
|
108 |
+
Hamsawardhini Rengarajan<br>
|
109 |
+
Lam Zhiwen Clarence<br>
|
110 |
+
Leong Weiqi<br>
|
111 |
+
Li Yier<br>
|
112 |
+
Liu Darius<br>
|
113 |
+
Lovenia Holy<br>
|
114 |
+
Ng Raymond<br>
|
115 |
+
Ngui Jian Gang<br>
|
116 |
+
Ong Tat-Wee David<br>
|
117 |
+
Railey Montalan<br>
|
118 |
+
Tai Ngee Chia<br>
|
119 |
+
Tan Choon Meng<br>
|
120 |
+
Thanh Ngan Nguyen<br>
|
121 |
+
Teo Jin Howe<br>
|
122 |
+
Teo Wei Yi<br>
|
123 |
+
William Tjhi<br>
|
124 |
+
Yeo Yeow Tong<br>
|
125 |
+
Yong Xianbin<br>
|
126 |
+
Yosephine<br>
|
127 |
+
Leslie Teo<br>
|
128 |
+
|
129 |
+
## Contact
|
130 |
+
|
131 |
+
For more info, please contact us at [email protected]
|
132 |
+
|