dotw commited on
Commit
7aaed1e
·
1 Parent(s): 0200f5d

update with SEA-LION 7B details

Browse files
Files changed (1) hide show
  1. README.md +132 -3
README.md CHANGED
@@ -1,3 +1,132 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SEA-LION
2
+
3
+ SEA-LION is a collection of LLMs which has been pretrained and instruct-tuned for the South-East Asia (SEA) region.
4
+ The models range from 3 billion to 7 billion parameters.
5
+ This is the card for the SEA-LION 7B model.
6
+
7
+ SEA-LION stands for <i>South-East Asia Languages In One Network</i>.
8
+
9
+
10
+ ## Model Details
11
+
12
+ ### Model Description
13
+
14
+ The SEA-LION model is a significant leap forward in the field of natural language processing and understanding,
15
+ specifically trained to understand South-East Asia (SEA) regional context.
16
+
17
+ SEA-LION is built on the robust MPT architecture and utilize a vocabulary size of 256K.
18
+
19
+ The model employs our proprietary SEABPETokenizer for tokenization.
20
+ Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.
21
+
22
+ The training data for SEA-LION encompasses 980B tokens.
23
+
24
+ - **Developed by:** Products Pillar, AI Singapore
25
+ - **Funded by:** Singapore NRF
26
+ - **Model type:** Decoder
27
+ - **Language(s) (NLP):** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
28
+ - **License:** MIT License
29
+
30
+
31
+ ## Training Details
32
+
33
+ ### Data
34
+
35
+ SEA-LION was trained on 980B tokens of the following data:
36
+
37
+ | Data Source | Tokens | Percentage |
38
+ |---------------------------|-------:|:----------:|
39
+ | RefinedWeb - English | 571.3B | 62.80% |
40
+ | mC4 - Chinese | 91.2B | 10.03% |
41
+ | mC4 - Indonesian | 3.6B | 0.40% |
42
+ | mC4 - Malay | 0.7B | 0.08% |
43
+ | mC4 - Filipino | 1.3B | 0.15% |
44
+ | mC4 - Burmese | 1.2B | 0.13% |
45
+ | mC4 - Vietnamese | 63.4B | 6.97% |
46
+ | mC4 - Thai | 10.8B | 1.19% |
47
+ | mC4 - Lao | 0.3B | 0.03% |
48
+ | mC4 - Khmer | 0.9B | 0.11% |
49
+ | mC4 - Tamil | 2.5B | 0.28% |
50
+ | the Stack - Python | 20.9B | 2.30% |
51
+ | the Stack - Javascript | 55.6B | 6.11% |
52
+ | the Stack - Shell | 1.3B | 0.14% |
53
+ | the Stack - SQL | 6.4B | 0.70% |
54
+ | the Stack - Markdown | 26.6B | 2.91% |
55
+ | RedPajama - StackExchange | 21.2B | 2.33% |
56
+ | RedPajama - ArXiv | 30.6B | 3.35% |
57
+
58
+
59
+ ### Infrastructure
60
+
61
+ SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
62
+ on the following hardware:
63
+
64
+ | Training Details | SEA-LION 7B |
65
+ |----------------------|:------------:|
66
+ | AWS EC2 p4d.24xlarge | 32 instances |
67
+ | Nvidia A100 40GB GPU | 256 |
68
+ | Training Duration | 22 days |
69
+
70
+
71
+ ### Configuration
72
+
73
+ | HyperParameter | SEA-LION 7B |
74
+ |-------------------|:------------------:|
75
+ | Precision | bfloat16 |
76
+ | Optimizer | decoupled_adamw |
77
+ | Scheduler | cosine_with_warmup |
78
+ | Learning Rate | 6.0e-5 |
79
+ | Global Batch Size | 2048 |
80
+ | Micro Batch Size | 4 |
81
+
82
+
83
+ ## Technical Specifications
84
+
85
+ ### Model Architecture and Objective
86
+
87
+ SEA-LION is a decoder model using the MPT architecture.
88
+
89
+ | Parameter | SEA-LION 7B |
90
+ |-----------------|:-----------:|
91
+ | Layers | 32 |
92
+ | d_model | 4096 |
93
+ | head_dim | 32 |
94
+ | Vocabulary | 256000 |
95
+ | Sequence Length | 2048 |
96
+
97
+
98
+ ### Tokenizer Details
99
+
100
+ We sample 20M lines from the training data to train the tokenizer.<br>
101
+ The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
102
+ The tokenizer type is Byte-Pair Encoding (BPE).
103
+
104
+
105
+
106
+ ## The Team
107
+
108
+ Hamsawardhini Rengarajan<br>
109
+ Lam Zhiwen Clarence<br>
110
+ Leong Weiqi<br>
111
+ Li Yier<br>
112
+ Liu Darius<br>
113
+ Lovenia Holy<br>
114
+ Ng Raymond<br>
115
+ Ngui Jian Gang<br>
116
+ Ong Tat-Wee David<br>
117
+ Railey Montalan<br>
118
+ Tai Ngee Chia<br>
119
+ Tan Choon Meng<br>
120
+ Thanh Ngan Nguyen<br>
121
+ Teo Jin Howe<br>
122
+ Teo Wei Yi<br>
123
+ William Tjhi<br>
124
+ Yeo Yeow Tong<br>
125
+ Yong Xianbin<br>
126
+ Yosephine<br>
127
+ Leslie Teo<br>
128
+
129
+ ## Contact
130
+
131
+ For more info, please contact us at [email protected]
132
+