{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f73f41122c0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 2007040, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700157594385903773, "learning_rate": 0.0006, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr4wT3E0Oo9cfqIvS1zG75QYuU7cd6duwAAAAAAAAAAI4/CPkMqRj+9lB2+xx7+vdjwYjzlyYi9AAAAAAAAAABmdHW8u+HEPS0rej0bYki+M2Z4PW52r7wAAAAAAAAAAABBrr15tgI/N9YguossLb5Y1hi9X1EsvAAAAAAAAAAAmsMwvYrg6T7emnO8n/gnvpomlLwizaC8AAAAAAAAAAAtggo+FNycPzVbCT9LNI2+rALxPZzJST4AAAAAAAAAAKBse76vU40+uroGvUenVL6HTGy9IEoTvQAAAAAAAAAA80oSvs+4cj9d2mu9jpgyvkDVQL2unCg8AAAAAAAAAACtrRc+bPbfu9jrZDo3DIq4mY0nvWCZarkAAIA/AACAP4DQFD3byZ4/bS3RPROjW74IjNw7H3q+PAAAAAAAAAAAANZtvEjHtroWx4K2YdCssTFVkThW/pU1AACAPwAAgD+aFx08VEWSPZb0eb0WRCm+NV33vOx9Ab0AAAAAAAAAABqzLb7epFE/qjJLPnIaSb4J6iQ9JVSaPAAAAAAAAAAAGosBPcFTdD7z+/O8fQYfvlmYVrlWUnw9AAAAAAAAAACT90E+eJm4PTOmUT1VRkG+o50ePTplAz0AAAAAAAAAABNeIL49gZo/psfFvhDE5L0PiMu9+aBKvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7gozN2TxKMAWyUTdwBjAF0lEdAwAdI2H+IdnV9lChoBkdAcPaXgtOEd2gHTZgBaAhHQMAHdwSrYGt1fZQoaAZHQG5nIAXEZR9oB02MAWgIR0DAB8IlOXVtdX2UKGgGR0BxEzQD3dsSaAdN7AFoCEdAwAfpYW+GoXV9lChoBkdAb4QsuFpPAWgHTd4BaAhHQMAICoFmnO11fZQoaAZHQHBKlgQYk3VoB01rAWgIR0DACB8UbkwOdX2UKGgGR0Btg/0f5k9VaAdNyAFoCEdAwAhYs8xKx3V9lChoBkdAcCNHp8neBWgHTbABaAhHQMAJXHzpX6t1fZQoaAZHQG41O9OARTVoB02fAWgIR0DACWeHN5dGdX2UKGgGR0BtgcZJkGzKaAdNoQFoCEdAwAnE/s3Q2XV9lChoBkdAbHXv4M4LkWgHTYwBaAhHQMAJ112A5Jd1fZQoaAZHQHD/3PJJXhhoB02TAWgIR0DACekcbR4RdX2UKGgGR0BrE52fTTfBaAdNpAFoCEdAwAoJsUIsy3V9lChoBkdAcWFTzND+i2gHTYkBaAhHQMAKCVrRBu51fZQoaAZHQGwuWj4593NoB02TAWgIR0DACjivq1PWdX2UKGgGR0BxGtH5JsfraAdNpAFoCEdAwApzKmsNlXV9lChoBkdAaj//CqIacmgHTaYBaAhHQMAKprqMWGh1fZQoaAZHQHBOscENe+poB026AWgIR0DACxJKL877dX2UKGgGR0BuSuiBXjlxaAdNgwFoCEdAwAsbfUF0P3V9lChoBkdAbb4pXp4bCWgHTbEBaAhHQMALLwGGEf11fZQoaAZHQFtP9srNGExoB03oA2gIR0DAC0S3ocJddX2UKGgGR0BuRh2dNFjNaAdNiAFoCEdAwAtgZfD1oXV9lChoBkdAbwkxnFo+OmgHTdcBaAhHQMALhDwx33Z1fZQoaAZHQGwUAeq7yx1oB02SAWgIR0DAC6leruIAdX2UKGgGR0Bv4Qvi97F9aAdNlQFoCEdAwAu3FrEcbXV9lChoBkdAb1g8J2MbWGgHTXoBaAhHQMAL/M/IKdB1fZQoaAZHQGrqoYFaB7NoB02iAWgIR0DADCN/H5rQdX2UKGgGR0BtSvF1jiGWaAdNowFoCEdAwA15bypaR3V9lChoBkdAbWNC8e0XxmgHTYgBaAhHQMANho+wC8x1fZQoaAZHQHBNb433pOhoB021AWgIR0DADZfFo+OfdX2UKGgGR0BrXBVdX1aoaAdNuAFoCEdAwA42Ap8WsXV9lChoBkdAbCtxS5y2hWgHTakBaAhHQMAOYhcAzYV1fZQoaAZHQHEF4+KTB69oB00/AmgIR0DADoAWYWtVdX2UKGgGR0BvEXVmSQo1aAdNeQFoCEdAwA6NXEIgNnV9lChoBkdAbkXdSEUTMGgHTaEBaAhHQMAO6uW0JF91fZQoaAZHQG1gBLoOhCdoB02bAWgIR0DADvI9TxXodX2UKGgGR0BuK9gMMI/raAdNowFoCEdAwA9HYq5LAnV9lChoBkdAbyY9PDYRNGgHTcUBaAhHQMAPZYffXPJ1fZQoaAZHQGkc5/b0voNoB02ZAWgIR0DAD2eQlruZdX2UKGgGR0BscUOy3Td+aAdNmwFoCEdAwA+a+NcW03V9lChoBkdAbYzjcVQAMmgHTXwBaAhHQMAPwkQGwA51fZQoaAZHQGwdCyQgcLloB02FAWgIR0DAEC6YqoZRdX2UKGgGR0BvQjfgrH2iaAdN1gFoCEdAwBBfyy2QXHV9lChoBkdAbMkS7oSteWgHTc0BaAhHQMARd6xPfsN1fZQoaAZHQG0pF8PWhAZoB02JAWgIR0DAEY0ZgogFdX2UKGgGR0BxVCI42jwhaAdNYgFoCEdAwBGOjHGS6nV9lChoBkdAb9/s3Q2MsGgHTa8BaAhHQMAR6HEl3Ql1fZQoaAZHQHA9Bs/IKdBoB03WAWgIR0DAEkehPCVKdX2UKGgGR0BsQb+aScLCaAdNogFoCEdAwBJMfGuLaXV9lChoBkdAbiTmbsniN2gHTbwBaAhHQMAScXokiUx1fZQoaAZHQG+COxbB42VoB02JAWgIR0DAEoD7uUlidX2UKGgGR0BqUMuzyBkJaAdNkwFoCEdAwBKQzHCGe3V9lChoBkdAbj+3Mpw0f2gHTaoBaAhHQMASm1u76Hl1fZQoaAZHQGqND1wo9cNoB02fAWgIR0DAEsS7EpAldX2UKGgGR0Bwq71e0G/vaAdNpQFoCEdAwBLyaBqbjXV9lChoBkdAaqoTC+De02gHTY8BaAhHQMATRVUEPlN1fZQoaAZHQGxIKy4Wk8BoB02pAWgIR0DAE6H1g6U8dX2UKGgGR0BwOGnbZezEaAdNcwFoCEdAwBO5y4nWrnV9lChoBkdAYTGWVu76HmgHTegDaAhHQMATy0CaJAN1fZQoaAZHQGrilUADJU5oB02OAWgIR0DAE84qVhTgdX2UKGgGR0BunyLAHmihaAdNrwFoCEdAwBQUx46fa3V9lChoBkdAcNVLKV6eG2gHTYgBaAhHQMAUMGj9GZx1fZQoaAZHQHEO9wBHTZxoB01gAWgIR0DAFGbc9GI9dX2UKGgGR0Buu3cJtzjnaAdNegFoCEdAwBVkgow223V9lChoBkdAcN4l4keIVWgHTYQBaAhHQMAVcglF+d91fZQoaAZHQGLlWkSElE9oB03oA2gIR0DAFY8YKpkxdX2UKGgGR0Bxa9YKYzBRaAdNhQFoCEdAwBYZpwjt5XV9lChoBkdAb1G77Kq4pmgHTbwBaAhHQMAWIGTC+Dh1fZQoaAZHQG1i8qWkaddoB03LAWgIR0DAFlDX+VC5dX2UKGgGR0BvM81Muez2aAdNlQFoCEdAwBZ7KZDzAnV9lChoBkdAaMOx6fJ3gWgHTasBaAhHQMAXL92xIJ91fZQoaAZHQGp7Dz7MxGloB02eAWgIR0DAF8FA3T/idX2UKGgGR0BvO76N2ki2aAdNlAFoCEdAwBfDh86V+3V9lChoBkdAcIDamXPZ7GgHTbUBaAhHQMAX0Io/iYN1fZQoaAZHQGpV/ZmI0qJoB02nAWgIR0DAF+8+u/1ydX2UKGgGR0Bwq2tihFmWaAdNgQFoCEdAwBgB7pFCs3V9lChoBkdAcIC3lS0jT2gHTW0BaAhHQMAYTDHfdh11fZQoaAZHQHBwcxTKkmBoB02mAWgIR0DAGFed7OVxdX2UKGgGR0BrVrxAjY7JaAdNowFoCEdAwBiEuOjqOnV9lChoBkdAbmD1V5rxiGgHTcsBaAhHQMAYww5NoJ11fZQoaAZHQHBD7coH9m9oB01tAWgIR0DAGMliSaE0dX2UKGgGR0Bw9aSpzcREaAdN0QFoCEdAwBjrASnLq3V9lChoBkdAcOio8ZDRdGgHTbIBaAhHQMAaGWrfcet1fZQoaAZHQG5BfjCHh0hoB03TAWgIR0DAGiAco6S1dX2UKGgGR0BrHlcdHUc5aAdNtQFoCEdAwBo+Ij4YanV9lChoBkdAcINm4RVZLmgHTZsBaAhHQMAakx1gYxd1fZQoaAZHQG76AEEC/49oB01rAWgIR0DAGrZFmWdFdX2UKGgGR0BXP67dznzQaAdN6ANoCEdAwBrFMnJDE3V9lChoBkdAcaZLXcxj8WgHTX4BaAhHQMAa6iYCyQh1fZQoaAZHQHBjozFdcB5oB02XAWgIR0DAGu3oJRfndX2UKGgGR0BsazFCLMs6aAdNrQFoCEdAwBsRe54GEHV9lChoBkdAcFBbHZK3/mgHTY8BaAhHQMAbEo8hcJN1fZQoaAZHQGx9iqhlDnhoB02UAWgIR0DAG1Xz19ORdX2UKGgGR0Bq5kTWXkYGaAdNjQFoCEdAwBtXZ9NN8HV9lChoBkdAahKzXz19OWgHTZoBaAhHQMAb3Yc/+sJ1fZQoaAZHQGuwCwr1/UhoB02fAWgIR0DAG97876pHdX2UKGgGR0BrKPNJOFg2aAdNqQFoCEdAwBwTJ/5Ly3V9lChoBkdAbvxRXwLE1mgHTacBaAhHQMAciZYoy9F1fZQoaAZHQG73i3PRiPRoB02WAWgIR0DAHJKttALRdX2UKGgGR0BwCVGkN4JNaAdNtgFoCEdAwByh4Kx9onVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1225, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9DqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}