|
"""Convert ViT and non-distilled DeiT checkpoints from the timm library.""" |
|
|
|
import argparse |
|
from pathlib import Path |
|
|
|
import requests |
|
import timm |
|
import torch |
|
from PIL import Image |
|
from timm.data import ImageNetInfo, infer_imagenet_subset |
|
|
|
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel |
|
from transformers.utils import logging |
|
|
|
|
|
logging.set_verbosity_info() |
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def create_rename_keys(config, base_model=False): |
|
rename_keys = [] |
|
for i in range(config.num_hidden_layers): |
|
|
|
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) |
|
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) |
|
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) |
|
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) |
|
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) |
|
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) |
|
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) |
|
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) |
|
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) |
|
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) |
|
|
|
|
|
rename_keys.extend( |
|
[ |
|
("cls_token", "vit.embeddings.cls_token"), |
|
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), |
|
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), |
|
("pos_embed", "vit.embeddings.position_embeddings"), |
|
] |
|
) |
|
|
|
if base_model: |
|
|
|
rename_keys.extend( |
|
[ |
|
("norm.weight", "layernorm.weight"), |
|
("norm.bias", "layernorm.bias"), |
|
] |
|
) |
|
|
|
|
|
rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] |
|
else: |
|
|
|
rename_keys.extend( |
|
[ |
|
("norm.weight", "vit.layernorm.weight"), |
|
("norm.bias", "vit.layernorm.bias"), |
|
("head.weight", "classifier.weight"), |
|
("head.bias", "classifier.bias"), |
|
] |
|
) |
|
|
|
return rename_keys |
|
|
|
|
|
|
|
def read_in_q_k_v(state_dict, config, base_model=False): |
|
for i in range(config.num_hidden_layers): |
|
if base_model: |
|
prefix = "" |
|
else: |
|
prefix = "vit." |
|
|
|
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") |
|
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") |
|
|
|
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ |
|
: config.hidden_size, : |
|
] |
|
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] |
|
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ |
|
config.hidden_size : config.hidden_size * 2, : |
|
] |
|
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ |
|
config.hidden_size : config.hidden_size * 2 |
|
] |
|
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ |
|
-config.hidden_size :, : |
|
] |
|
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] |
|
|
|
|
|
def remove_classification_head_(state_dict): |
|
ignore_keys = ["head.weight", "head.bias"] |
|
for k in ignore_keys: |
|
state_dict.pop(k, None) |
|
|
|
|
|
def rename_key(dct, old, new): |
|
val = dct.pop(old) |
|
dct[new] = val |
|
|
|
|
|
|
|
def prepare_img(): |
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
im = Image.open(requests.get(url, stream=True).raw) |
|
return im |
|
|
|
|
|
@torch.no_grad() |
|
def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path): |
|
""" |
|
Copy/paste/tweak model's weights to our ViT structure. |
|
""" |
|
|
|
|
|
config = ViTConfig() |
|
base_model = False |
|
|
|
|
|
timm_model = timm.create_model(vit_name, pretrained=True) |
|
timm_model.eval() |
|
|
|
|
|
|
|
if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity): |
|
raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.") |
|
|
|
|
|
if getattr(timm_model, "global_pool", None) == "avg": |
|
raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.") |
|
|
|
|
|
if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity): |
|
raise ValueError( |
|
f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer." |
|
) |
|
|
|
|
|
if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map": |
|
raise ValueError( |
|
f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool." |
|
) |
|
|
|
|
|
if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance( |
|
getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity |
|
): |
|
raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.") |
|
|
|
|
|
if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed): |
|
raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.") |
|
|
|
|
|
config.patch_size = timm_model.patch_embed.patch_size[0] |
|
config.image_size = timm_model.patch_embed.img_size[0] |
|
|
|
|
|
config.hidden_size = timm_model.embed_dim |
|
config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features |
|
config.num_hidden_layers = len(timm_model.blocks) |
|
config.num_attention_heads = timm_model.blocks[0].attn.num_heads |
|
|
|
|
|
if timm_model.num_classes != 0: |
|
config.num_labels = timm_model.num_classes |
|
|
|
imagenet_subset = infer_imagenet_subset(timm_model) |
|
dataset_info = ImageNetInfo(imagenet_subset) |
|
config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())} |
|
config.label2id = {v: k for k, v in config.id2label.items()} |
|
else: |
|
print(f"{vit_name} is going to be converted as a feature extractor only.") |
|
base_model = True |
|
|
|
|
|
state_dict = timm_model.state_dict() |
|
|
|
|
|
if base_model: |
|
remove_classification_head_(state_dict) |
|
rename_keys = create_rename_keys(config, base_model) |
|
for src, dest in rename_keys: |
|
rename_key(state_dict, src, dest) |
|
read_in_q_k_v(state_dict, config, base_model) |
|
|
|
|
|
if base_model: |
|
model = ViTModel(config, add_pooling_layer=False).eval() |
|
else: |
|
model = ViTForImageClassification(config).eval() |
|
model.load_state_dict(state_dict) |
|
|
|
|
|
if "deit" in vit_name: |
|
image_processor = DeiTImageProcessor(size=config.image_size) |
|
else: |
|
image_processor = ViTImageProcessor(size=config.image_size) |
|
encoding = image_processor(images=prepare_img(), return_tensors="pt") |
|
pixel_values = encoding["pixel_values"] |
|
outputs = model(pixel_values) |
|
|
|
if base_model: |
|
timm_pooled_output = timm_model.forward_features(pixel_values) |
|
assert timm_pooled_output.shape == outputs.last_hidden_state.shape |
|
assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1) |
|
else: |
|
timm_logits = timm_model(pixel_values) |
|
assert timm_logits.shape == outputs.logits.shape |
|
assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) |
|
|
|
Path(pytorch_dump_folder_path).mkdir(exist_ok=True) |
|
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") |
|
model.save_pretrained(pytorch_dump_folder_path) |
|
print(f"Saving image processor to {pytorch_dump_folder_path}") |
|
image_processor.save_pretrained(pytorch_dump_folder_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--vit_name", |
|
default="vit_base_patch16_224", |
|
type=str, |
|
help="Name of the ViT timm model you'd like to convert.", |
|
) |
|
parser.add_argument( |
|
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." |
|
) |
|
|
|
args = parser.parse_args() |
|
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path) |