LPX55's picture
Create scripts/convert_to_pytorch.py
4c6c42a verified
raw
history blame
10.3 kB
"""Convert ViT and non-distilled DeiT checkpoints from the timm library."""
import argparse
from pathlib import Path
import requests
import timm
import torch
from PIL import Image
from timm.data import ImageNetInfo, infer_imagenet_subset
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, base_model=False):
rename_keys = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
]
)
if base_model:
# layernorm
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
]
)
# if just the base model, we should remove "vit" from all keys that start with "vit"
rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
]
)
return rename_keys
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, base_model=False):
for i in range(config.num_hidden_layers):
if base_model:
prefix = ""
else:
prefix = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
: config.hidden_size, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-config.hidden_size :, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
def remove_classification_head_(state_dict):
ignore_keys = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(k, None)
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our ViT structure.
"""
# define default ViT configuration
config = ViTConfig()
base_model = False
# load original model from timm
timm_model = timm.create_model(vit_name, pretrained=True)
timm_model.eval()
# detect unsupported ViT models in transformers
# fc_norm is present
if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity):
raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.")
# use of global average pooling in combination (or without) class token
if getattr(timm_model, "global_pool", None) == "avg":
raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.")
# CLIP style vit with norm_pre layer present
if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity):
raise ValueError(
f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer."
)
# SigLIP style vit with attn_pool layer present
if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map":
raise ValueError(
f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool."
)
# use of layer scale in ViT model blocks
if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance(
getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity
):
raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.")
# Hybrid ResNet-ViTs
if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed):
raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.")
# get patch size and image size from the patch embedding submodule
config.patch_size = timm_model.patch_embed.patch_size[0]
config.image_size = timm_model.patch_embed.img_size[0]
# retrieve architecture-specific parameters from the timm model
config.hidden_size = timm_model.embed_dim
config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features
config.num_hidden_layers = len(timm_model.blocks)
config.num_attention_heads = timm_model.blocks[0].attn.num_heads
# check whether the model has a classification head or not
if timm_model.num_classes != 0:
config.num_labels = timm_model.num_classes
# infer ImageNet subset from timm model
imagenet_subset = infer_imagenet_subset(timm_model)
dataset_info = ImageNetInfo(imagenet_subset)
config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())}
config.label2id = {v: k for k, v in config.id2label.items()}
else:
print(f"{vit_name} is going to be converted as a feature extractor only.")
base_model = True
# load state_dict of original model
state_dict = timm_model.state_dict()
# remove and rename some keys in the state dict
if base_model:
remove_classification_head_(state_dict)
rename_keys = create_rename_keys(config, base_model)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, base_model)
# load HuggingFace model
if base_model:
model = ViTModel(config, add_pooling_layer=False).eval()
else:
model = ViTForImageClassification(config).eval()
model.load_state_dict(state_dict)
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
image_processor = DeiTImageProcessor(size=config.image_size)
else:
image_processor = ViTImageProcessor(size=config.image_size)
encoding = image_processor(images=prepare_img(), return_tensors="pt")
pixel_values = encoding["pixel_values"]
outputs = model(pixel_values)
if base_model:
timm_pooled_output = timm_model.forward_features(pixel_values)
assert timm_pooled_output.shape == outputs.last_hidden_state.shape
assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1)
else:
timm_logits = timm_model(pixel_values)
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_patch16_224",
type=str,
help="Name of the ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)