Update README.md
Browse files
README.md
CHANGED
@@ -23,8 +23,8 @@ Vision Transformer (ViT) model fine-tuned for detecting AI-generated images in f
|
|
23 |
- **Finetuned from:** timm/vit_small_patch16_384.augreg_in21k_ft_in1k
|
24 |
|
25 |
### Model Sources
|
26 |
-
- **Repository:** [
|
27 |
-
- **Paper:** [
|
28 |
|
29 |
## Uses
|
30 |
### Direct Use
|
@@ -33,18 +33,12 @@ Detect AI-generated images in:
|
|
33 |
- Digital forensic investigations
|
34 |
- Media authenticity verification
|
35 |
|
36 |
-
### Out-of-Scope Use
|
37 |
-
- Detecting videos or text content
|
38 |
-
- Identifying generative model architectures (use Transformers-based detectors instead)
|
39 |
-
|
40 |
## Bias, Risks, and Limitations
|
41 |
- **Performance variance:** Accuracy drops 15-20% on diffusion-generated images vs GAN-generated
|
42 |
- **Geometric artifacts:** Struggles with rotated/flipped synthetic images
|
43 |
- **Data bias:** Trained primarily on LAION and COCO derivatives ([source][2411.04125v1.pdf])
|
|
|
44 |
|
45 |
-
### Recommendations
|
46 |
-
- Combine with error-level analysis for improved robustness
|
47 |
-
- Update model quarterly to address new generator architectures
|
48 |
|
49 |
## How to Use
|
50 |
```python
|
@@ -60,8 +54,8 @@ predicted_class = outputs.logits.argmax(-1)
|
|
60 |
|
61 |
## Training Details
|
62 |
### Training Data
|
63 |
-
-
|
64 |
-
-
|
65 |
|
66 |
### Training Hyperparameters
|
67 |
- **Framework:** PyTorch 2.0
|
@@ -81,11 +75,7 @@ predicted_class = outputs.logits.argmax(-1)
|
|
81 |
| AUC-ROC | 0.992 |
|
82 |
| FP Rate | 2.1% |
|
83 |
|
84 |
-
|
85 |
-
### Model Architecture
|
86 |
-
- ViT-Small with 16x16 patch embeddings
|
87 |
-
- 384x384 input resolution
|
88 |
-
- 12 transformer layers
|
89 |
|
90 |
## Citation
|
91 |
**BibTeX:**
|
|
|
23 |
- **Finetuned from:** timm/vit_small_patch16_384.augreg_in21k_ft_in1k
|
24 |
|
25 |
### Model Sources
|
26 |
+
- **Repository:** [JeongsooP/Community-Forensics](https://github.com/JeongsooP/Community-Forensics)
|
27 |
+
- **Paper:** [arXiv:2411.04125](https://arxiv.org/pdf/2411.04125)
|
28 |
|
29 |
## Uses
|
30 |
### Direct Use
|
|
|
33 |
- Digital forensic investigations
|
34 |
- Media authenticity verification
|
35 |
|
|
|
|
|
|
|
|
|
36 |
## Bias, Risks, and Limitations
|
37 |
- **Performance variance:** Accuracy drops 15-20% on diffusion-generated images vs GAN-generated
|
38 |
- **Geometric artifacts:** Struggles with rotated/flipped synthetic images
|
39 |
- **Data bias:** Trained primarily on LAION and COCO derivatives ([source][2411.04125v1.pdf])
|
40 |
+
- **ADDED BY UPLOADER**: Model is already out of date, fails to detect images on newer generation models.
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
## How to Use
|
44 |
```python
|
|
|
54 |
|
55 |
## Training Details
|
56 |
### Training Data
|
57 |
+
- 2.7mil images from 15+ generators, 4600+ models
|
58 |
+
- Over 1.15TB worth of images
|
59 |
|
60 |
### Training Hyperparameters
|
61 |
- **Framework:** PyTorch 2.0
|
|
|
75 |
| AUC-ROC | 0.992 |
|
76 |
| FP Rate | 2.1% |
|
77 |
|
78 |
+

|
|
|
|
|
|
|
|
|
79 |
|
80 |
## Citation
|
81 |
**BibTeX:**
|