File size: 5,818 Bytes
7cb1d9e 0cc5352 7cb1d9e e32175b 0cc5352 7cb1d9e e32175b 9bb16b2 e32175b e84e626 e32175b 5d2e009 e32175b 5d2e009 e32175b 5d2e009 e32175b 8a5f755 e0438f9 75427e9 8a5f755 e0438f9 8a5f755 e0438f9 0cc5352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
language:
- en
license: cc-by-nc-nd-4.0
datasets:
- Open-Orca/SlimOrca
- ajibawa-2023/SlimOrca-ShareGPT
model-index:
- name: SlimOrca-13B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.15
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.4
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 49.37
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/SlimOrca-13B
name: Open LLM Leaderboard
---
**SlimOrca-13B: A General Purpose Intelligent Model**
This Model is trained on refined version of SlimOrca made available by [Open-Orca](https://huggingface.co/Open-Orca) team.
The idea was to check how this Model will perform in the absence of "system" prompt/instruction.
This Model is very good in various types of General Purpose content generation such as Q&A (including multiple choice), Articles from Summary, Sentiment Analysis,
Context & Hypothesis, Reviews, Erotic story generation etc.
It can also generate Uncensored content. Kindly be careful while generating Uncensored content as you will be responsible for what you
generate.
It is trained on 517981 set of conversations. Each set having 2 conversations. I have shared this [data](https://huggingface.co/datasets/ajibawa-2023/SlimOrca-ShareGPT).
All the credit goes to the Open-Orca team for releasing SlimOrca dataset.
**Training:**
Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took almost 11 Days. DeepSpeed codebase was used for training purpose.
Entire data is trained on Llama-2 by Meta.
This is a full fine tuned model. Links for quantized models are given below.
**GPTQ GGML & AWQ**
GPTQ: [Link](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ)
GGUF: [Link](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF)
AWQ: [Link](https://huggingface.co/TheBloke/SlimOrca-13B-AWQ)
Special Thanks to [TheBloke](https://huggingface.co/TheBloke) for making these models available.
**Example Prompt:**
```
This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.
Context
You are a helpful AI assistant.
USER: <prompt>
ASSISTANT:
```
You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Example Output**
Example 1
![Example 1](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/hM_EJaSZiMjMQU35EiHGM.png)
Example 2
![Example 2](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/riNaxJeTWdCEE4dNP8GWp.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__SlimOrca-13B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |60.39|
|AI2 Reasoning Challenge (25-Shot)|60.15|
|HellaSwag (10-Shot) |81.40|
|MMLU (5-Shot) |57.04|
|TruthfulQA (0-shot) |49.37|
|Winogrande (5-shot) |74.43|
|GSM8k (5-shot) |39.95|
|