ajitgupta commited on
Commit
96863b3
·
1 Parent(s): 7f9acf7

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.26 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd2d95920855d0d66961c05b14759252ebefe9e29004e7495a540be4513c8326
3
+ size 107788
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3203974dc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f3203975580>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 100000,
23
+ "_total_timesteps": 100000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681391448579718242,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5o6Yv4iMtL/BWyS/oo2sP/m4+L5Opko+GT85vQJ/wr8goxu/70/XPpqHMT729dA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]]",
38
+ "desired_goal": "[[-1.1918609 -1.4105387 -0.64202505]\n [ 1.3480723 -0.48578623 0.19790003]\n [-0.04522619 -1.519501 -0.60795784]\n [ 0.42053172 0.17336884 1.6325061 ]]",
39
+ "observation": "[[ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVQwXPQzoNz2vJb49XnHiPJQYIj1u3ug9w8cNvUZ8eD1K8YI++CWvvTylvT3Czg4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.036877 0.04489903 0.09284531]\n [ 0.02764195 0.03957422 0.1137055 ]\n [-0.03461434 0.06066539 0.25574714]\n [-0.08552164 0.09260032 0.1394606 ]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyJQPQdVo/r+UhpRSlIwBbJRLMowBdJRHQHR3SuIRAbB1fZQoaAZoCWgPQwiXOPJAZNH3v5SGlFKUaBVLMmgWR0B0dIHQhOgydX2UKGgGaAloD0MI+69z02Zc+r+UhpRSlGgVSzJoFkdAdHD40dilSHV9lChoBmgJaA9DCA5N2ekHNf2/lIaUUpRoFUsyaBZHQHRs3/HYHxB1fZQoaAZoCWgPQwiWPnRBfcv3v5SGlFKUaBVLMmgWR0B0f8uXeFcqdX2UKGgGaAloD0MIo7H2d7bH+7+UhpRSlGgVSzJoFkdAdHz7p3X7L3V9lChoBmgJaA9DCD9vKlJhLPm/lIaUUpRoFUsyaBZHQHR5a72+PBB1fZQoaAZoCWgPQwiWW1oNifv3v5SGlFKUaBVLMmgWR0B0dU1ZTyavdX2UKGgGaAloD0MIysStghho9b+UhpRSlGgVSzJoFkdAdIh52Qnx8XV9lChoBmgJaA9DCFAZ/z7jAvu/lIaUUpRoFUsyaBZHQHSFqbSZ0CB1fZQoaAZoCWgPQwh319mQf6b7v5SGlFKUaBVLMmgWR0B0ghmapgkUdX2UKGgGaAloD0MI1ldXBWrx9r+UhpRSlGgVSzJoFkdAdH3619fCynV9lChoBmgJaA9DCLd9j/rrVfq/lIaUUpRoFUsyaBZHQHSRA/C66J91fZQoaAZoCWgPQwjaN/dXj3v2v5SGlFKUaBVLMmgWR0B0jjSH/LkkdX2UKGgGaAloD0MIgCctXFah97+UhpRSlGgVSzJoFkdAdIqkupS75HV9lChoBmgJaA9DCJUoe0s5X/2/lIaUUpRoFUsyaBZHQHSGhgy/KyR1fZQoaAZoCWgPQwgt6/6xEJ35v5SGlFKUaBVLMmgWR0B0mbQgLZzxdX2UKGgGaAloD0MIn82qz9VW+b+UhpRSlGgVSzJoFkdAdJblkH2RJXV9lChoBmgJaA9DCMgoz7wcNvm/lIaUUpRoFUsyaBZHQHSTVFQVKwp1fZQoaAZoCWgPQwhs6dFUT6b7v5SGlFKUaBVLMmgWR0B0jztrsSkCdX2UKGgGaAloD0MI5ZmXw+77+L+UhpRSlGgVSzJoFkdAdKJNayKNynV9lChoBmgJaA9DCG0bRkHwuPq/lIaUUpRoFUsyaBZHQHSfgNoakyl1fZQoaAZoCWgPQwgL8N3mjVP0v5SGlFKUaBVLMmgWR0B0m/AJswcpdX2UKGgGaAloD0MI0zO9xFim9L+UhpRSlGgVSzJoFkdAdJfR+jM3ZXV9lChoBmgJaA9DCF3F4jeFlfm/lIaUUpRoFUsyaBZHQHSrEuxrzoV1fZQoaAZoCWgPQwgwLH++LRj3v5SGlFKUaBVLMmgWR0B0qEK+i8FqdX2UKGgGaAloD0MIu38sRIcA9L+UhpRSlGgVSzJoFkdAdKSyDZlFt3V9lChoBmgJaA9DCJc48kBkUfa/lIaUUpRoFUsyaBZHQHSgleF+NLl1fZQoaAZoCWgPQwhHdqVlpF72v5SGlFKUaBVLMmgWR0B0tCCqZML4dX2UKGgGaAloD0MIeR7cnbVb97+UhpRSlGgVSzJoFkdAdLFQokRjBnV9lChoBmgJaA9DCFjJx+4CJfe/lIaUUpRoFUsyaBZHQHStwrhBJI11fZQoaAZoCWgPQwgSoKaWrfX4v5SGlFKUaBVLMmgWR0B0qaPS2H+IdX2UKGgGaAloD0MIjBTKwteX/L+UhpRSlGgVSzJoFkdAdLyccU/OdHV9lChoBmgJaA9DCB43/G66Jf2/lIaUUpRoFUsyaBZHQHS5zJhfBvd1fZQoaAZoCWgPQwihgVg2c0j1v5SGlFKUaBVLMmgWR0B0tjvy9VWCdX2UKGgGaAloD0MIhKCjVS3p97+UhpRSlGgVSzJoFkdAdLIdj5Kvm3V9lChoBmgJaA9DCCTRyyiWW/q/lIaUUpRoFUsyaBZHQHTFChBZ6ld1fZQoaAZoCWgPQwjkgcgiTXz4v5SGlFKUaBVLMmgWR0B0wjq7iADrdX2UKGgGaAloD0MIA7Fs5pBU+7+UhpRSlGgVSzJoFkdAdL6p/PPcBXV9lChoBmgJaA9DCLeZCvFI/PW/lIaUUpRoFUsyaBZHQHS6jIV/MGJ1fZQoaAZoCWgPQwiVKlH2ljL/v5SGlFKUaBVLMmgWR0B0zax1PnB+dX2UKGgGaAloD0MIYMyWrIow9r+UhpRSlGgVSzJoFkdAdMrc9W6shnV9lChoBmgJaA9DCMBfzJasyve/lIaUUpRoFUsyaBZHQHTHTGLk0aZ1fZQoaAZoCWgPQwgvFobI6ev7v5SGlFKUaBVLMmgWR0B0wy8yvcJudX2UKGgGaAloD0MIH2easP3k/r+UhpRSlGgVSzJoFkdAdNYgezUqhHV9lChoBmgJaA9DCPlISnoYWvm/lIaUUpRoFUsyaBZHQHTTU25xzaN1fZQoaAZoCWgPQwhBYVCm0ST+v5SGlFKUaBVLMmgWR0B0z8OPNmlJdX2UKGgGaAloD0MIU0Kwql4+/b+UhpRSlGgVSzJoFkdAdMukXk5p8HV9lChoBmgJaA9DCHzw2qUNh/e/lIaUUpRoFUsyaBZHQHTe2aMJhOR1fZQoaAZoCWgPQwi/uipQi0H6v5SGlFKUaBVLMmgWR0B03Alv60pmdX2UKGgGaAloD0MIEhWqm4t/+7+UhpRSlGgVSzJoFkdAdNh7XQMQVnV9lChoBmgJaA9DCB2s/3OYb/+/lIaUUpRoFUsyaBZHQHTUXCoCMgl1fZQoaAZoCWgPQwgv+DQnL3L4v5SGlFKUaBVLMmgWR0B050BeXzDodX2UKGgGaAloD0MImYOgo1Vt97+UhpRSlGgVSzJoFkdAdORwSamXPnV9lChoBmgJaA9DCHRDU3b6Qfe/lIaUUpRoFUsyaBZHQHTg3+6y0KJ1fZQoaAZoCWgPQwgW+Ipuveb3v5SGlFKUaBVLMmgWR0B03ME+xGDudX2UKGgGaAloD0MILLmKxW9K9r+UhpRSlGgVSzJoFkdAdPBeizsyBXV9lChoBmgJaA9DCBdmoZ3T7Pu/lIaUUpRoFUsyaBZHQHTtjoQnQY11fZQoaAZoCWgPQwhLAP4pVSL6v5SGlFKUaBVLMmgWR0B06gH+qBEsdX2UKGgGaAloD0MIkMAffv67+b+UhpRSlGgVSzJoFkdAdOXjSofjj3V9lChoBmgJaA9DCKQ0m8dhMPm/lIaUUpRoFUsyaBZHQHT7XskY4yZ1fZQoaAZoCWgPQwhBKVq5Fxj6v5SGlFKUaBVLMmgWR0B0+Jc3VCokdX2UKGgGaAloD0MIlltaDYn79L+UhpRSlGgVSzJoFkdAdPUQCjk+5nV9lChoBmgJaA9DCA3hmGVPwvq/lIaUUpRoFUsyaBZHQHTw9vKlpGp1fZQoaAZoCWgPQwgrTrUWZuH4v5SGlFKUaBVLMmgWR0B1CI4tHxz8dX2UKGgGaAloD0MIqySyD7Ks+b+UhpRSlGgVSzJoFkdAdQXLWI42j3V9lChoBmgJaA9DCBQ/xty1BPm/lIaUUpRoFUsyaBZHQHUCQf2bobJ1fZQoaAZoCWgPQwjvObAcIcP6v5SGlFKUaBVLMmgWR0B0/ifmLcbjdX2UKGgGaAloD0MI1IIXfQUp/L+UhpRSlGgVSzJoFkdAdRZcQAdXDHV9lChoBmgJaA9DCN83vvbM0vu/lIaUUpRoFUsyaBZHQHUTkaqCHyp1fZQoaAZoCWgPQwgPlxx3Skf7v5SGlFKUaBVLMmgWR0B1EAZXMhX9dX2UKGgGaAloD0MIRFILJZNT97+UhpRSlGgVSzJoFkdAdQvr/82rGXV9lChoBmgJaA9DCLdfPlkxnPi/lIaUUpRoFUsyaBZHQHUkhkAggYB1fZQoaAZoCWgPQwgFTyFX6pn9v5SGlFKUaBVLMmgWR0B1Ib5vcafjdX2UKGgGaAloD0MI+P2bFyd++7+UhpRSlGgVSzJoFkdAdR40NjLB9HV9lChoBmgJaA9DCBhgH5268vi/lIaUUpRoFUsyaBZHQHUaG1D0Dlp1fZQoaAZoCWgPQwhDIJc48oD/v5SGlFKUaBVLMmgWR0B1MzsIE8q4dX2UKGgGaAloD0MIJuSDns0q+r+UhpRSlGgVSzJoFkdAdTBy8jAzpHV9lChoBmgJaA9DCJbpl4i3zve/lIaUUpRoFUsyaBZHQHUs6be/Ho51fZQoaAZoCWgPQwiNJEG4Agr/v5SGlFKUaBVLMmgWR0B1KNYigTRIdX2UKGgGaAloD0MIUDblCu/y9r+UhpRSlGgVSzJoFkdAdUH8+iaiK3V9lChoBmgJaA9DCCklBKvqZfa/lIaUUpRoFUsyaBZHQHU/Mvysjml1fZQoaAZoCWgPQwja44V0eIj6v5SGlFKUaBVLMmgWR0B1O6jXWe6JdX2UKGgGaAloD0MIJ/p8lBGX+L+UhpRSlGgVSzJoFkdAdTeQumJm/XV9lChoBmgJaA9DCOyGbYsy2/i/lIaUUpRoFUsyaBZHQHVRAiml67d1fZQoaAZoCWgPQwipaoKo+0D2v5SGlFKUaBVLMmgWR0B1TjoPkJa8dX2UKGgGaAloD0MIeLeyRGcZ/L+UhpRSlGgVSzJoFkdAdUqwYcebNXV9lChoBmgJaA9DCEnW4egqXfu/lIaUUpRoFUsyaBZHQHVGl/QSi/R1fZQoaAZoCWgPQwhEh8CRQEP2v5SGlFKUaBVLMmgWR0B1XGuV5a/zdX2UKGgGaAloD0MIB0MdVril/r+UhpRSlGgVSzJoFkdAdVme+VTrFHV9lChoBmgJaA9DCC9q96sAfwDAlIaUUpRoFUsyaBZHQHVWD4cm0E51fZQoaAZoCWgPQwg9gEV+/dD2v5SGlFKUaBVLMmgWR0B1UfCk43m3dX2UKGgGaAloD0MI4Cu69Zre97+UhpRSlGgVSzJoFkdAdWVenyd4FHV9lChoBmgJaA9DCHNIaqFkcva/lIaUUpRoFUsyaBZHQHVijnFHavl1fZQoaAZoCWgPQwhk5gKXxxr5v5SGlFKUaBVLMmgWR0B1Xv3g1m8NdX2UKGgGaAloD0MImX6JeOu8/r+UhpRSlGgVSzJoFkdAdVrfChvitXV9lChoBmgJaA9DCNBhvrwAOwDAlIaUUpRoFUsyaBZHQHVuLcXWOIZ1fZQoaAZoCWgPQwjL2xFOC972v5SGlFKUaBVLMmgWR0B1a2WrwOOKdX2UKGgGaAloD0MIl8lwPJ+B+r+UhpRSlGgVSzJoFkdAdWfa8Hv+fnV9lChoBmgJaA9DCIVALnHkwfm/lIaUUpRoFUsyaBZHQHVjwiml67d1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 5000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24109e3d8c431070fc21c36619de70e55cd4b086df69d783919f38382f3c9a47
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c3a3dae53503248e885740a79bcb70d33bb87e2bb30727ed0a8033cef8daf8d
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3203974dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3203975580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681391448579718242, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5o6Yv4iMtL/BWyS/oo2sP/m4+L5Opko+GT85vQJ/wr8goxu/70/XPpqHMT729dA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]]", "desired_goal": "[[-1.1918609 -1.4105387 -0.64202505]\n [ 1.3480723 -0.48578623 0.19790003]\n [-0.04522619 -1.519501 -0.60795784]\n [ 0.42053172 0.17336884 1.6325061 ]]", "observation": "[[ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVQwXPQzoNz2vJb49XnHiPJQYIj1u3ug9w8cNvUZ8eD1K8YI++CWvvTylvT3Czg4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.036877 0.04489903 0.09284531]\n [ 0.02764195 0.03957422 0.1137055 ]\n [-0.03461434 0.06066539 0.25574714]\n [-0.08552164 0.09260032 0.1394606 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyJQPQdVo/r+UhpRSlIwBbJRLMowBdJRHQHR3SuIRAbB1fZQoaAZoCWgPQwiXOPJAZNH3v5SGlFKUaBVLMmgWR0B0dIHQhOgydX2UKGgGaAloD0MI+69z02Zc+r+UhpRSlGgVSzJoFkdAdHD40dilSHV9lChoBmgJaA9DCA5N2ekHNf2/lIaUUpRoFUsyaBZHQHRs3/HYHxB1fZQoaAZoCWgPQwiWPnRBfcv3v5SGlFKUaBVLMmgWR0B0f8uXeFcqdX2UKGgGaAloD0MIo7H2d7bH+7+UhpRSlGgVSzJoFkdAdHz7p3X7L3V9lChoBmgJaA9DCD9vKlJhLPm/lIaUUpRoFUsyaBZHQHR5a72+PBB1fZQoaAZoCWgPQwiWW1oNifv3v5SGlFKUaBVLMmgWR0B0dU1ZTyavdX2UKGgGaAloD0MIysStghho9b+UhpRSlGgVSzJoFkdAdIh52Qnx8XV9lChoBmgJaA9DCFAZ/z7jAvu/lIaUUpRoFUsyaBZHQHSFqbSZ0CB1fZQoaAZoCWgPQwh319mQf6b7v5SGlFKUaBVLMmgWR0B0ghmapgkUdX2UKGgGaAloD0MI1ldXBWrx9r+UhpRSlGgVSzJoFkdAdH3619fCynV9lChoBmgJaA9DCLd9j/rrVfq/lIaUUpRoFUsyaBZHQHSRA/C66J91fZQoaAZoCWgPQwjaN/dXj3v2v5SGlFKUaBVLMmgWR0B0jjSH/LkkdX2UKGgGaAloD0MIgCctXFah97+UhpRSlGgVSzJoFkdAdIqkupS75HV9lChoBmgJaA9DCJUoe0s5X/2/lIaUUpRoFUsyaBZHQHSGhgy/KyR1fZQoaAZoCWgPQwgt6/6xEJ35v5SGlFKUaBVLMmgWR0B0mbQgLZzxdX2UKGgGaAloD0MIn82qz9VW+b+UhpRSlGgVSzJoFkdAdJblkH2RJXV9lChoBmgJaA9DCMgoz7wcNvm/lIaUUpRoFUsyaBZHQHSTVFQVKwp1fZQoaAZoCWgPQwhs6dFUT6b7v5SGlFKUaBVLMmgWR0B0jztrsSkCdX2UKGgGaAloD0MI5ZmXw+77+L+UhpRSlGgVSzJoFkdAdKJNayKNynV9lChoBmgJaA9DCG0bRkHwuPq/lIaUUpRoFUsyaBZHQHSfgNoakyl1fZQoaAZoCWgPQwgL8N3mjVP0v5SGlFKUaBVLMmgWR0B0m/AJswcpdX2UKGgGaAloD0MI0zO9xFim9L+UhpRSlGgVSzJoFkdAdJfR+jM3ZXV9lChoBmgJaA9DCF3F4jeFlfm/lIaUUpRoFUsyaBZHQHSrEuxrzoV1fZQoaAZoCWgPQwgwLH++LRj3v5SGlFKUaBVLMmgWR0B0qEK+i8FqdX2UKGgGaAloD0MIu38sRIcA9L+UhpRSlGgVSzJoFkdAdKSyDZlFt3V9lChoBmgJaA9DCJc48kBkUfa/lIaUUpRoFUsyaBZHQHSgleF+NLl1fZQoaAZoCWgPQwhHdqVlpF72v5SGlFKUaBVLMmgWR0B0tCCqZML4dX2UKGgGaAloD0MIeR7cnbVb97+UhpRSlGgVSzJoFkdAdLFQokRjBnV9lChoBmgJaA9DCFjJx+4CJfe/lIaUUpRoFUsyaBZHQHStwrhBJI11fZQoaAZoCWgPQwgSoKaWrfX4v5SGlFKUaBVLMmgWR0B0qaPS2H+IdX2UKGgGaAloD0MIjBTKwteX/L+UhpRSlGgVSzJoFkdAdLyccU/OdHV9lChoBmgJaA9DCB43/G66Jf2/lIaUUpRoFUsyaBZHQHS5zJhfBvd1fZQoaAZoCWgPQwihgVg2c0j1v5SGlFKUaBVLMmgWR0B0tjvy9VWCdX2UKGgGaAloD0MIhKCjVS3p97+UhpRSlGgVSzJoFkdAdLIdj5Kvm3V9lChoBmgJaA9DCCTRyyiWW/q/lIaUUpRoFUsyaBZHQHTFChBZ6ld1fZQoaAZoCWgPQwjkgcgiTXz4v5SGlFKUaBVLMmgWR0B0wjq7iADrdX2UKGgGaAloD0MIA7Fs5pBU+7+UhpRSlGgVSzJoFkdAdL6p/PPcBXV9lChoBmgJaA9DCLeZCvFI/PW/lIaUUpRoFUsyaBZHQHS6jIV/MGJ1fZQoaAZoCWgPQwiVKlH2ljL/v5SGlFKUaBVLMmgWR0B0zax1PnB+dX2UKGgGaAloD0MIYMyWrIow9r+UhpRSlGgVSzJoFkdAdMrc9W6shnV9lChoBmgJaA9DCMBfzJasyve/lIaUUpRoFUsyaBZHQHTHTGLk0aZ1fZQoaAZoCWgPQwgvFobI6ev7v5SGlFKUaBVLMmgWR0B0wy8yvcJudX2UKGgGaAloD0MIH2easP3k/r+UhpRSlGgVSzJoFkdAdNYgezUqhHV9lChoBmgJaA9DCPlISnoYWvm/lIaUUpRoFUsyaBZHQHTTU25xzaN1fZQoaAZoCWgPQwhBYVCm0ST+v5SGlFKUaBVLMmgWR0B0z8OPNmlJdX2UKGgGaAloD0MIU0Kwql4+/b+UhpRSlGgVSzJoFkdAdMukXk5p8HV9lChoBmgJaA9DCHzw2qUNh/e/lIaUUpRoFUsyaBZHQHTe2aMJhOR1fZQoaAZoCWgPQwi/uipQi0H6v5SGlFKUaBVLMmgWR0B03Alv60pmdX2UKGgGaAloD0MIEhWqm4t/+7+UhpRSlGgVSzJoFkdAdNh7XQMQVnV9lChoBmgJaA9DCB2s/3OYb/+/lIaUUpRoFUsyaBZHQHTUXCoCMgl1fZQoaAZoCWgPQwgv+DQnL3L4v5SGlFKUaBVLMmgWR0B050BeXzDodX2UKGgGaAloD0MImYOgo1Vt97+UhpRSlGgVSzJoFkdAdORwSamXPnV9lChoBmgJaA9DCHRDU3b6Qfe/lIaUUpRoFUsyaBZHQHTg3+6y0KJ1fZQoaAZoCWgPQwgW+Ipuveb3v5SGlFKUaBVLMmgWR0B03ME+xGDudX2UKGgGaAloD0MILLmKxW9K9r+UhpRSlGgVSzJoFkdAdPBeizsyBXV9lChoBmgJaA9DCBdmoZ3T7Pu/lIaUUpRoFUsyaBZHQHTtjoQnQY11fZQoaAZoCWgPQwhLAP4pVSL6v5SGlFKUaBVLMmgWR0B06gH+qBEsdX2UKGgGaAloD0MIkMAffv67+b+UhpRSlGgVSzJoFkdAdOXjSofjj3V9lChoBmgJaA9DCKQ0m8dhMPm/lIaUUpRoFUsyaBZHQHT7XskY4yZ1fZQoaAZoCWgPQwhBKVq5Fxj6v5SGlFKUaBVLMmgWR0B0+Jc3VCokdX2UKGgGaAloD0MIlltaDYn79L+UhpRSlGgVSzJoFkdAdPUQCjk+5nV9lChoBmgJaA9DCA3hmGVPwvq/lIaUUpRoFUsyaBZHQHTw9vKlpGp1fZQoaAZoCWgPQwgrTrUWZuH4v5SGlFKUaBVLMmgWR0B1CI4tHxz8dX2UKGgGaAloD0MIqySyD7Ks+b+UhpRSlGgVSzJoFkdAdQXLWI42j3V9lChoBmgJaA9DCBQ/xty1BPm/lIaUUpRoFUsyaBZHQHUCQf2bobJ1fZQoaAZoCWgPQwjvObAcIcP6v5SGlFKUaBVLMmgWR0B0/ifmLcbjdX2UKGgGaAloD0MI1IIXfQUp/L+UhpRSlGgVSzJoFkdAdRZcQAdXDHV9lChoBmgJaA9DCN83vvbM0vu/lIaUUpRoFUsyaBZHQHUTkaqCHyp1fZQoaAZoCWgPQwgPlxx3Skf7v5SGlFKUaBVLMmgWR0B1EAZXMhX9dX2UKGgGaAloD0MIRFILJZNT97+UhpRSlGgVSzJoFkdAdQvr/82rGXV9lChoBmgJaA9DCLdfPlkxnPi/lIaUUpRoFUsyaBZHQHUkhkAggYB1fZQoaAZoCWgPQwgFTyFX6pn9v5SGlFKUaBVLMmgWR0B1Ib5vcafjdX2UKGgGaAloD0MI+P2bFyd++7+UhpRSlGgVSzJoFkdAdR40NjLB9HV9lChoBmgJaA9DCBhgH5268vi/lIaUUpRoFUsyaBZHQHUaG1D0Dlp1fZQoaAZoCWgPQwhDIJc48oD/v5SGlFKUaBVLMmgWR0B1MzsIE8q4dX2UKGgGaAloD0MIJuSDns0q+r+UhpRSlGgVSzJoFkdAdTBy8jAzpHV9lChoBmgJaA9DCJbpl4i3zve/lIaUUpRoFUsyaBZHQHUs6be/Ho51fZQoaAZoCWgPQwiNJEG4Agr/v5SGlFKUaBVLMmgWR0B1KNYigTRIdX2UKGgGaAloD0MIUDblCu/y9r+UhpRSlGgVSzJoFkdAdUH8+iaiK3V9lChoBmgJaA9DCCklBKvqZfa/lIaUUpRoFUsyaBZHQHU/Mvysjml1fZQoaAZoCWgPQwja44V0eIj6v5SGlFKUaBVLMmgWR0B1O6jXWe6JdX2UKGgGaAloD0MIJ/p8lBGX+L+UhpRSlGgVSzJoFkdAdTeQumJm/XV9lChoBmgJaA9DCOyGbYsy2/i/lIaUUpRoFUsyaBZHQHVRAiml67d1fZQoaAZoCWgPQwipaoKo+0D2v5SGlFKUaBVLMmgWR0B1TjoPkJa8dX2UKGgGaAloD0MIeLeyRGcZ/L+UhpRSlGgVSzJoFkdAdUqwYcebNXV9lChoBmgJaA9DCEnW4egqXfu/lIaUUpRoFUsyaBZHQHVGl/QSi/R1fZQoaAZoCWgPQwhEh8CRQEP2v5SGlFKUaBVLMmgWR0B1XGuV5a/zdX2UKGgGaAloD0MIB0MdVril/r+UhpRSlGgVSzJoFkdAdVme+VTrFHV9lChoBmgJaA9DCC9q96sAfwDAlIaUUpRoFUsyaBZHQHVWD4cm0E51fZQoaAZoCWgPQwg9gEV+/dD2v5SGlFKUaBVLMmgWR0B1UfCk43m3dX2UKGgGaAloD0MI4Cu69Zre97+UhpRSlGgVSzJoFkdAdWVenyd4FHV9lChoBmgJaA9DCHNIaqFkcva/lIaUUpRoFUsyaBZHQHVijnFHavl1fZQoaAZoCWgPQwhk5gKXxxr5v5SGlFKUaBVLMmgWR0B1Xv3g1m8NdX2UKGgGaAloD0MImX6JeOu8/r+UhpRSlGgVSzJoFkdAdVrfChvitXV9lChoBmgJaA9DCNBhvrwAOwDAlIaUUpRoFUsyaBZHQHVuLcXWOIZ1fZQoaAZoCWgPQwjL2xFOC972v5SGlFKUaBVLMmgWR0B1a2WrwOOKdX2UKGgGaAloD0MIl8lwPJ+B+r+UhpRSlGgVSzJoFkdAdWfa8Hv+fnV9lChoBmgJaA9DCIVALnHkwfm/lIaUUpRoFUsyaBZHQHVjwiml67d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (799 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.2558253929484635, "std_reward": 0.12136451638141887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-13T13:36:42.103408"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:405da3546980f3538b99e2baf8dc1fe10ae6a639133f5971a4133f357b34adc7
3
+ size 2381