Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.26 +/- 0.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd2d95920855d0d66961c05b14759252ebefe9e29004e7495a540be4513c8326
|
3 |
+
size 107788
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3203974dc0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3203975580>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 100000,
|
23 |
+
"_total_timesteps": 100000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681391448579718242,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5o6Yv4iMtL/BWyS/oo2sP/m4+L5Opko+GT85vQJ/wr8goxu/70/XPpqHMT729dA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]]",
|
38 |
+
"desired_goal": "[[-1.1918609 -1.4105387 -0.64202505]\n [ 1.3480723 -0.48578623 0.19790003]\n [-0.04522619 -1.519501 -0.60795784]\n [ 0.42053172 0.17336884 1.6325061 ]]",
|
39 |
+
"observation": "[[ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVQwXPQzoNz2vJb49XnHiPJQYIj1u3ug9w8cNvUZ8eD1K8YI++CWvvTylvT3Czg4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.036877 0.04489903 0.09284531]\n [ 0.02764195 0.03957422 0.1137055 ]\n [-0.03461434 0.06066539 0.25574714]\n [-0.08552164 0.09260032 0.1394606 ]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyJQPQdVo/r+UhpRSlIwBbJRLMowBdJRHQHR3SuIRAbB1fZQoaAZoCWgPQwiXOPJAZNH3v5SGlFKUaBVLMmgWR0B0dIHQhOgydX2UKGgGaAloD0MI+69z02Zc+r+UhpRSlGgVSzJoFkdAdHD40dilSHV9lChoBmgJaA9DCA5N2ekHNf2/lIaUUpRoFUsyaBZHQHRs3/HYHxB1fZQoaAZoCWgPQwiWPnRBfcv3v5SGlFKUaBVLMmgWR0B0f8uXeFcqdX2UKGgGaAloD0MIo7H2d7bH+7+UhpRSlGgVSzJoFkdAdHz7p3X7L3V9lChoBmgJaA9DCD9vKlJhLPm/lIaUUpRoFUsyaBZHQHR5a72+PBB1fZQoaAZoCWgPQwiWW1oNifv3v5SGlFKUaBVLMmgWR0B0dU1ZTyavdX2UKGgGaAloD0MIysStghho9b+UhpRSlGgVSzJoFkdAdIh52Qnx8XV9lChoBmgJaA9DCFAZ/z7jAvu/lIaUUpRoFUsyaBZHQHSFqbSZ0CB1fZQoaAZoCWgPQwh319mQf6b7v5SGlFKUaBVLMmgWR0B0ghmapgkUdX2UKGgGaAloD0MI1ldXBWrx9r+UhpRSlGgVSzJoFkdAdH3619fCynV9lChoBmgJaA9DCLd9j/rrVfq/lIaUUpRoFUsyaBZHQHSRA/C66J91fZQoaAZoCWgPQwjaN/dXj3v2v5SGlFKUaBVLMmgWR0B0jjSH/LkkdX2UKGgGaAloD0MIgCctXFah97+UhpRSlGgVSzJoFkdAdIqkupS75HV9lChoBmgJaA9DCJUoe0s5X/2/lIaUUpRoFUsyaBZHQHSGhgy/KyR1fZQoaAZoCWgPQwgt6/6xEJ35v5SGlFKUaBVLMmgWR0B0mbQgLZzxdX2UKGgGaAloD0MIn82qz9VW+b+UhpRSlGgVSzJoFkdAdJblkH2RJXV9lChoBmgJaA9DCMgoz7wcNvm/lIaUUpRoFUsyaBZHQHSTVFQVKwp1fZQoaAZoCWgPQwhs6dFUT6b7v5SGlFKUaBVLMmgWR0B0jztrsSkCdX2UKGgGaAloD0MI5ZmXw+77+L+UhpRSlGgVSzJoFkdAdKJNayKNynV9lChoBmgJaA9DCG0bRkHwuPq/lIaUUpRoFUsyaBZHQHSfgNoakyl1fZQoaAZoCWgPQwgL8N3mjVP0v5SGlFKUaBVLMmgWR0B0m/AJswcpdX2UKGgGaAloD0MI0zO9xFim9L+UhpRSlGgVSzJoFkdAdJfR+jM3ZXV9lChoBmgJaA9DCF3F4jeFlfm/lIaUUpRoFUsyaBZHQHSrEuxrzoV1fZQoaAZoCWgPQwgwLH++LRj3v5SGlFKUaBVLMmgWR0B0qEK+i8FqdX2UKGgGaAloD0MIu38sRIcA9L+UhpRSlGgVSzJoFkdAdKSyDZlFt3V9lChoBmgJaA9DCJc48kBkUfa/lIaUUpRoFUsyaBZHQHSgleF+NLl1fZQoaAZoCWgPQwhHdqVlpF72v5SGlFKUaBVLMmgWR0B0tCCqZML4dX2UKGgGaAloD0MIeR7cnbVb97+UhpRSlGgVSzJoFkdAdLFQokRjBnV9lChoBmgJaA9DCFjJx+4CJfe/lIaUUpRoFUsyaBZHQHStwrhBJI11fZQoaAZoCWgPQwgSoKaWrfX4v5SGlFKUaBVLMmgWR0B0qaPS2H+IdX2UKGgGaAloD0MIjBTKwteX/L+UhpRSlGgVSzJoFkdAdLyccU/OdHV9lChoBmgJaA9DCB43/G66Jf2/lIaUUpRoFUsyaBZHQHS5zJhfBvd1fZQoaAZoCWgPQwihgVg2c0j1v5SGlFKUaBVLMmgWR0B0tjvy9VWCdX2UKGgGaAloD0MIhKCjVS3p97+UhpRSlGgVSzJoFkdAdLIdj5Kvm3V9lChoBmgJaA9DCCTRyyiWW/q/lIaUUpRoFUsyaBZHQHTFChBZ6ld1fZQoaAZoCWgPQwjkgcgiTXz4v5SGlFKUaBVLMmgWR0B0wjq7iADrdX2UKGgGaAloD0MIA7Fs5pBU+7+UhpRSlGgVSzJoFkdAdL6p/PPcBXV9lChoBmgJaA9DCLeZCvFI/PW/lIaUUpRoFUsyaBZHQHS6jIV/MGJ1fZQoaAZoCWgPQwiVKlH2ljL/v5SGlFKUaBVLMmgWR0B0zax1PnB+dX2UKGgGaAloD0MIYMyWrIow9r+UhpRSlGgVSzJoFkdAdMrc9W6shnV9lChoBmgJaA9DCMBfzJasyve/lIaUUpRoFUsyaBZHQHTHTGLk0aZ1fZQoaAZoCWgPQwgvFobI6ev7v5SGlFKUaBVLMmgWR0B0wy8yvcJudX2UKGgGaAloD0MIH2easP3k/r+UhpRSlGgVSzJoFkdAdNYgezUqhHV9lChoBmgJaA9DCPlISnoYWvm/lIaUUpRoFUsyaBZHQHTTU25xzaN1fZQoaAZoCWgPQwhBYVCm0ST+v5SGlFKUaBVLMmgWR0B0z8OPNmlJdX2UKGgGaAloD0MIU0Kwql4+/b+UhpRSlGgVSzJoFkdAdMukXk5p8HV9lChoBmgJaA9DCHzw2qUNh/e/lIaUUpRoFUsyaBZHQHTe2aMJhOR1fZQoaAZoCWgPQwi/uipQi0H6v5SGlFKUaBVLMmgWR0B03Alv60pmdX2UKGgGaAloD0MIEhWqm4t/+7+UhpRSlGgVSzJoFkdAdNh7XQMQVnV9lChoBmgJaA9DCB2s/3OYb/+/lIaUUpRoFUsyaBZHQHTUXCoCMgl1fZQoaAZoCWgPQwgv+DQnL3L4v5SGlFKUaBVLMmgWR0B050BeXzDodX2UKGgGaAloD0MImYOgo1Vt97+UhpRSlGgVSzJoFkdAdORwSamXPnV9lChoBmgJaA9DCHRDU3b6Qfe/lIaUUpRoFUsyaBZHQHTg3+6y0KJ1fZQoaAZoCWgPQwgW+Ipuveb3v5SGlFKUaBVLMmgWR0B03ME+xGDudX2UKGgGaAloD0MILLmKxW9K9r+UhpRSlGgVSzJoFkdAdPBeizsyBXV9lChoBmgJaA9DCBdmoZ3T7Pu/lIaUUpRoFUsyaBZHQHTtjoQnQY11fZQoaAZoCWgPQwhLAP4pVSL6v5SGlFKUaBVLMmgWR0B06gH+qBEsdX2UKGgGaAloD0MIkMAffv67+b+UhpRSlGgVSzJoFkdAdOXjSofjj3V9lChoBmgJaA9DCKQ0m8dhMPm/lIaUUpRoFUsyaBZHQHT7XskY4yZ1fZQoaAZoCWgPQwhBKVq5Fxj6v5SGlFKUaBVLMmgWR0B0+Jc3VCokdX2UKGgGaAloD0MIlltaDYn79L+UhpRSlGgVSzJoFkdAdPUQCjk+5nV9lChoBmgJaA9DCA3hmGVPwvq/lIaUUpRoFUsyaBZHQHTw9vKlpGp1fZQoaAZoCWgPQwgrTrUWZuH4v5SGlFKUaBVLMmgWR0B1CI4tHxz8dX2UKGgGaAloD0MIqySyD7Ks+b+UhpRSlGgVSzJoFkdAdQXLWI42j3V9lChoBmgJaA9DCBQ/xty1BPm/lIaUUpRoFUsyaBZHQHUCQf2bobJ1fZQoaAZoCWgPQwjvObAcIcP6v5SGlFKUaBVLMmgWR0B0/ifmLcbjdX2UKGgGaAloD0MI1IIXfQUp/L+UhpRSlGgVSzJoFkdAdRZcQAdXDHV9lChoBmgJaA9DCN83vvbM0vu/lIaUUpRoFUsyaBZHQHUTkaqCHyp1fZQoaAZoCWgPQwgPlxx3Skf7v5SGlFKUaBVLMmgWR0B1EAZXMhX9dX2UKGgGaAloD0MIRFILJZNT97+UhpRSlGgVSzJoFkdAdQvr/82rGXV9lChoBmgJaA9DCLdfPlkxnPi/lIaUUpRoFUsyaBZHQHUkhkAggYB1fZQoaAZoCWgPQwgFTyFX6pn9v5SGlFKUaBVLMmgWR0B1Ib5vcafjdX2UKGgGaAloD0MI+P2bFyd++7+UhpRSlGgVSzJoFkdAdR40NjLB9HV9lChoBmgJaA9DCBhgH5268vi/lIaUUpRoFUsyaBZHQHUaG1D0Dlp1fZQoaAZoCWgPQwhDIJc48oD/v5SGlFKUaBVLMmgWR0B1MzsIE8q4dX2UKGgGaAloD0MIJuSDns0q+r+UhpRSlGgVSzJoFkdAdTBy8jAzpHV9lChoBmgJaA9DCJbpl4i3zve/lIaUUpRoFUsyaBZHQHUs6be/Ho51fZQoaAZoCWgPQwiNJEG4Agr/v5SGlFKUaBVLMmgWR0B1KNYigTRIdX2UKGgGaAloD0MIUDblCu/y9r+UhpRSlGgVSzJoFkdAdUH8+iaiK3V9lChoBmgJaA9DCCklBKvqZfa/lIaUUpRoFUsyaBZHQHU/Mvysjml1fZQoaAZoCWgPQwja44V0eIj6v5SGlFKUaBVLMmgWR0B1O6jXWe6JdX2UKGgGaAloD0MIJ/p8lBGX+L+UhpRSlGgVSzJoFkdAdTeQumJm/XV9lChoBmgJaA9DCOyGbYsy2/i/lIaUUpRoFUsyaBZHQHVRAiml67d1fZQoaAZoCWgPQwipaoKo+0D2v5SGlFKUaBVLMmgWR0B1TjoPkJa8dX2UKGgGaAloD0MIeLeyRGcZ/L+UhpRSlGgVSzJoFkdAdUqwYcebNXV9lChoBmgJaA9DCEnW4egqXfu/lIaUUpRoFUsyaBZHQHVGl/QSi/R1fZQoaAZoCWgPQwhEh8CRQEP2v5SGlFKUaBVLMmgWR0B1XGuV5a/zdX2UKGgGaAloD0MIB0MdVril/r+UhpRSlGgVSzJoFkdAdVme+VTrFHV9lChoBmgJaA9DCC9q96sAfwDAlIaUUpRoFUsyaBZHQHVWD4cm0E51fZQoaAZoCWgPQwg9gEV+/dD2v5SGlFKUaBVLMmgWR0B1UfCk43m3dX2UKGgGaAloD0MI4Cu69Zre97+UhpRSlGgVSzJoFkdAdWVenyd4FHV9lChoBmgJaA9DCHNIaqFkcva/lIaUUpRoFUsyaBZHQHVijnFHavl1fZQoaAZoCWgPQwhk5gKXxxr5v5SGlFKUaBVLMmgWR0B1Xv3g1m8NdX2UKGgGaAloD0MImX6JeOu8/r+UhpRSlGgVSzJoFkdAdVrfChvitXV9lChoBmgJaA9DCNBhvrwAOwDAlIaUUpRoFUsyaBZHQHVuLcXWOIZ1fZQoaAZoCWgPQwjL2xFOC972v5SGlFKUaBVLMmgWR0B1a2WrwOOKdX2UKGgGaAloD0MIl8lwPJ+B+r+UhpRSlGgVSzJoFkdAdWfa8Hv+fnV9lChoBmgJaA9DCIVALnHkwfm/lIaUUpRoFUsyaBZHQHVjwiml67d1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 5000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24109e3d8c431070fc21c36619de70e55cd4b086df69d783919f38382f3c9a47
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c3a3dae53503248e885740a79bcb70d33bb87e2bb30727ed0a8033cef8daf8d
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3203974dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3203975580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681391448579718242, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/CnmSPnwlqDy6QgM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5o6Yv4iMtL/BWyS/oo2sP/m4+L5Opko+GT85vQJ/wr8goxu/70/XPpqHMT729dA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjwKeZI+fCWoPLpCAz/E8de6zd+zuuYSRjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]\n [0.2860797 0.02052569 0.5127369 ]]", "desired_goal": "[[-1.1918609 -1.4105387 -0.64202505]\n [ 1.3480723 -0.48578623 0.19790003]\n [-0.04522619 -1.519501 -0.60795784]\n [ 0.42053172 0.17336884 1.6325061 ]]", "observation": "[[ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]\n [ 0.2860797 0.02052569 0.5127369 -0.00164753 -0.00137233 0.01208947]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVQwXPQzoNz2vJb49XnHiPJQYIj1u3ug9w8cNvUZ8eD1K8YI++CWvvTylvT3Czg4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.036877 0.04489903 0.09284531]\n [ 0.02764195 0.03957422 0.1137055 ]\n [-0.03461434 0.06066539 0.25574714]\n [-0.08552164 0.09260032 0.1394606 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyJQPQdVo/r+UhpRSlIwBbJRLMowBdJRHQHR3SuIRAbB1fZQoaAZoCWgPQwiXOPJAZNH3v5SGlFKUaBVLMmgWR0B0dIHQhOgydX2UKGgGaAloD0MI+69z02Zc+r+UhpRSlGgVSzJoFkdAdHD40dilSHV9lChoBmgJaA9DCA5N2ekHNf2/lIaUUpRoFUsyaBZHQHRs3/HYHxB1fZQoaAZoCWgPQwiWPnRBfcv3v5SGlFKUaBVLMmgWR0B0f8uXeFcqdX2UKGgGaAloD0MIo7H2d7bH+7+UhpRSlGgVSzJoFkdAdHz7p3X7L3V9lChoBmgJaA9DCD9vKlJhLPm/lIaUUpRoFUsyaBZHQHR5a72+PBB1fZQoaAZoCWgPQwiWW1oNifv3v5SGlFKUaBVLMmgWR0B0dU1ZTyavdX2UKGgGaAloD0MIysStghho9b+UhpRSlGgVSzJoFkdAdIh52Qnx8XV9lChoBmgJaA9DCFAZ/z7jAvu/lIaUUpRoFUsyaBZHQHSFqbSZ0CB1fZQoaAZoCWgPQwh319mQf6b7v5SGlFKUaBVLMmgWR0B0ghmapgkUdX2UKGgGaAloD0MI1ldXBWrx9r+UhpRSlGgVSzJoFkdAdH3619fCynV9lChoBmgJaA9DCLd9j/rrVfq/lIaUUpRoFUsyaBZHQHSRA/C66J91fZQoaAZoCWgPQwjaN/dXj3v2v5SGlFKUaBVLMmgWR0B0jjSH/LkkdX2UKGgGaAloD0MIgCctXFah97+UhpRSlGgVSzJoFkdAdIqkupS75HV9lChoBmgJaA9DCJUoe0s5X/2/lIaUUpRoFUsyaBZHQHSGhgy/KyR1fZQoaAZoCWgPQwgt6/6xEJ35v5SGlFKUaBVLMmgWR0B0mbQgLZzxdX2UKGgGaAloD0MIn82qz9VW+b+UhpRSlGgVSzJoFkdAdJblkH2RJXV9lChoBmgJaA9DCMgoz7wcNvm/lIaUUpRoFUsyaBZHQHSTVFQVKwp1fZQoaAZoCWgPQwhs6dFUT6b7v5SGlFKUaBVLMmgWR0B0jztrsSkCdX2UKGgGaAloD0MI5ZmXw+77+L+UhpRSlGgVSzJoFkdAdKJNayKNynV9lChoBmgJaA9DCG0bRkHwuPq/lIaUUpRoFUsyaBZHQHSfgNoakyl1fZQoaAZoCWgPQwgL8N3mjVP0v5SGlFKUaBVLMmgWR0B0m/AJswcpdX2UKGgGaAloD0MI0zO9xFim9L+UhpRSlGgVSzJoFkdAdJfR+jM3ZXV9lChoBmgJaA9DCF3F4jeFlfm/lIaUUpRoFUsyaBZHQHSrEuxrzoV1fZQoaAZoCWgPQwgwLH++LRj3v5SGlFKUaBVLMmgWR0B0qEK+i8FqdX2UKGgGaAloD0MIu38sRIcA9L+UhpRSlGgVSzJoFkdAdKSyDZlFt3V9lChoBmgJaA9DCJc48kBkUfa/lIaUUpRoFUsyaBZHQHSgleF+NLl1fZQoaAZoCWgPQwhHdqVlpF72v5SGlFKUaBVLMmgWR0B0tCCqZML4dX2UKGgGaAloD0MIeR7cnbVb97+UhpRSlGgVSzJoFkdAdLFQokRjBnV9lChoBmgJaA9DCFjJx+4CJfe/lIaUUpRoFUsyaBZHQHStwrhBJI11fZQoaAZoCWgPQwgSoKaWrfX4v5SGlFKUaBVLMmgWR0B0qaPS2H+IdX2UKGgGaAloD0MIjBTKwteX/L+UhpRSlGgVSzJoFkdAdLyccU/OdHV9lChoBmgJaA9DCB43/G66Jf2/lIaUUpRoFUsyaBZHQHS5zJhfBvd1fZQoaAZoCWgPQwihgVg2c0j1v5SGlFKUaBVLMmgWR0B0tjvy9VWCdX2UKGgGaAloD0MIhKCjVS3p97+UhpRSlGgVSzJoFkdAdLIdj5Kvm3V9lChoBmgJaA9DCCTRyyiWW/q/lIaUUpRoFUsyaBZHQHTFChBZ6ld1fZQoaAZoCWgPQwjkgcgiTXz4v5SGlFKUaBVLMmgWR0B0wjq7iADrdX2UKGgGaAloD0MIA7Fs5pBU+7+UhpRSlGgVSzJoFkdAdL6p/PPcBXV9lChoBmgJaA9DCLeZCvFI/PW/lIaUUpRoFUsyaBZHQHS6jIV/MGJ1fZQoaAZoCWgPQwiVKlH2ljL/v5SGlFKUaBVLMmgWR0B0zax1PnB+dX2UKGgGaAloD0MIYMyWrIow9r+UhpRSlGgVSzJoFkdAdMrc9W6shnV9lChoBmgJaA9DCMBfzJasyve/lIaUUpRoFUsyaBZHQHTHTGLk0aZ1fZQoaAZoCWgPQwgvFobI6ev7v5SGlFKUaBVLMmgWR0B0wy8yvcJudX2UKGgGaAloD0MIH2easP3k/r+UhpRSlGgVSzJoFkdAdNYgezUqhHV9lChoBmgJaA9DCPlISnoYWvm/lIaUUpRoFUsyaBZHQHTTU25xzaN1fZQoaAZoCWgPQwhBYVCm0ST+v5SGlFKUaBVLMmgWR0B0z8OPNmlJdX2UKGgGaAloD0MIU0Kwql4+/b+UhpRSlGgVSzJoFkdAdMukXk5p8HV9lChoBmgJaA9DCHzw2qUNh/e/lIaUUpRoFUsyaBZHQHTe2aMJhOR1fZQoaAZoCWgPQwi/uipQi0H6v5SGlFKUaBVLMmgWR0B03Alv60pmdX2UKGgGaAloD0MIEhWqm4t/+7+UhpRSlGgVSzJoFkdAdNh7XQMQVnV9lChoBmgJaA9DCB2s/3OYb/+/lIaUUpRoFUsyaBZHQHTUXCoCMgl1fZQoaAZoCWgPQwgv+DQnL3L4v5SGlFKUaBVLMmgWR0B050BeXzDodX2UKGgGaAloD0MImYOgo1Vt97+UhpRSlGgVSzJoFkdAdORwSamXPnV9lChoBmgJaA9DCHRDU3b6Qfe/lIaUUpRoFUsyaBZHQHTg3+6y0KJ1fZQoaAZoCWgPQwgW+Ipuveb3v5SGlFKUaBVLMmgWR0B03ME+xGDudX2UKGgGaAloD0MILLmKxW9K9r+UhpRSlGgVSzJoFkdAdPBeizsyBXV9lChoBmgJaA9DCBdmoZ3T7Pu/lIaUUpRoFUsyaBZHQHTtjoQnQY11fZQoaAZoCWgPQwhLAP4pVSL6v5SGlFKUaBVLMmgWR0B06gH+qBEsdX2UKGgGaAloD0MIkMAffv67+b+UhpRSlGgVSzJoFkdAdOXjSofjj3V9lChoBmgJaA9DCKQ0m8dhMPm/lIaUUpRoFUsyaBZHQHT7XskY4yZ1fZQoaAZoCWgPQwhBKVq5Fxj6v5SGlFKUaBVLMmgWR0B0+Jc3VCokdX2UKGgGaAloD0MIlltaDYn79L+UhpRSlGgVSzJoFkdAdPUQCjk+5nV9lChoBmgJaA9DCA3hmGVPwvq/lIaUUpRoFUsyaBZHQHTw9vKlpGp1fZQoaAZoCWgPQwgrTrUWZuH4v5SGlFKUaBVLMmgWR0B1CI4tHxz8dX2UKGgGaAloD0MIqySyD7Ks+b+UhpRSlGgVSzJoFkdAdQXLWI42j3V9lChoBmgJaA9DCBQ/xty1BPm/lIaUUpRoFUsyaBZHQHUCQf2bobJ1fZQoaAZoCWgPQwjvObAcIcP6v5SGlFKUaBVLMmgWR0B0/ifmLcbjdX2UKGgGaAloD0MI1IIXfQUp/L+UhpRSlGgVSzJoFkdAdRZcQAdXDHV9lChoBmgJaA9DCN83vvbM0vu/lIaUUpRoFUsyaBZHQHUTkaqCHyp1fZQoaAZoCWgPQwgPlxx3Skf7v5SGlFKUaBVLMmgWR0B1EAZXMhX9dX2UKGgGaAloD0MIRFILJZNT97+UhpRSlGgVSzJoFkdAdQvr/82rGXV9lChoBmgJaA9DCLdfPlkxnPi/lIaUUpRoFUsyaBZHQHUkhkAggYB1fZQoaAZoCWgPQwgFTyFX6pn9v5SGlFKUaBVLMmgWR0B1Ib5vcafjdX2UKGgGaAloD0MI+P2bFyd++7+UhpRSlGgVSzJoFkdAdR40NjLB9HV9lChoBmgJaA9DCBhgH5268vi/lIaUUpRoFUsyaBZHQHUaG1D0Dlp1fZQoaAZoCWgPQwhDIJc48oD/v5SGlFKUaBVLMmgWR0B1MzsIE8q4dX2UKGgGaAloD0MIJuSDns0q+r+UhpRSlGgVSzJoFkdAdTBy8jAzpHV9lChoBmgJaA9DCJbpl4i3zve/lIaUUpRoFUsyaBZHQHUs6be/Ho51fZQoaAZoCWgPQwiNJEG4Agr/v5SGlFKUaBVLMmgWR0B1KNYigTRIdX2UKGgGaAloD0MIUDblCu/y9r+UhpRSlGgVSzJoFkdAdUH8+iaiK3V9lChoBmgJaA9DCCklBKvqZfa/lIaUUpRoFUsyaBZHQHU/Mvysjml1fZQoaAZoCWgPQwja44V0eIj6v5SGlFKUaBVLMmgWR0B1O6jXWe6JdX2UKGgGaAloD0MIJ/p8lBGX+L+UhpRSlGgVSzJoFkdAdTeQumJm/XV9lChoBmgJaA9DCOyGbYsy2/i/lIaUUpRoFUsyaBZHQHVRAiml67d1fZQoaAZoCWgPQwipaoKo+0D2v5SGlFKUaBVLMmgWR0B1TjoPkJa8dX2UKGgGaAloD0MIeLeyRGcZ/L+UhpRSlGgVSzJoFkdAdUqwYcebNXV9lChoBmgJaA9DCEnW4egqXfu/lIaUUpRoFUsyaBZHQHVGl/QSi/R1fZQoaAZoCWgPQwhEh8CRQEP2v5SGlFKUaBVLMmgWR0B1XGuV5a/zdX2UKGgGaAloD0MIB0MdVril/r+UhpRSlGgVSzJoFkdAdVme+VTrFHV9lChoBmgJaA9DCC9q96sAfwDAlIaUUpRoFUsyaBZHQHVWD4cm0E51fZQoaAZoCWgPQwg9gEV+/dD2v5SGlFKUaBVLMmgWR0B1UfCk43m3dX2UKGgGaAloD0MI4Cu69Zre97+UhpRSlGgVSzJoFkdAdWVenyd4FHV9lChoBmgJaA9DCHNIaqFkcva/lIaUUpRoFUsyaBZHQHVijnFHavl1fZQoaAZoCWgPQwhk5gKXxxr5v5SGlFKUaBVLMmgWR0B1Xv3g1m8NdX2UKGgGaAloD0MImX6JeOu8/r+UhpRSlGgVSzJoFkdAdVrfChvitXV9lChoBmgJaA9DCNBhvrwAOwDAlIaUUpRoFUsyaBZHQHVuLcXWOIZ1fZQoaAZoCWgPQwjL2xFOC972v5SGlFKUaBVLMmgWR0B1a2WrwOOKdX2UKGgGaAloD0MIl8lwPJ+B+r+UhpRSlGgVSzJoFkdAdWfa8Hv+fnV9lChoBmgJaA9DCIVALnHkwfm/lIaUUpRoFUsyaBZHQHVjwiml67d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (799 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.2558253929484635, "std_reward": 0.12136451638141887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-13T13:36:42.103408"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:405da3546980f3538b99e2baf8dc1fe10ae6a639133f5971a4133f357b34adc7
|
3 |
+
size 2381
|