File size: 3,509 Bytes
68861b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: EleutherAI/gpt-neo-125m
library_name: peft
license: mit
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: gpt-neoMedChatbot
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt-neoMedChatbot

This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4059

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.1874        | 0.0709 | 100  | 3.0118          |
| 2.8756        | 0.1417 | 200  | 2.8228          |
| 2.7134        | 0.2126 | 300  | 2.7358          |
| 2.6948        | 0.2835 | 400  | 2.6833          |
| 2.6386        | 0.3544 | 500  | 2.6441          |
| 2.6525        | 0.4252 | 600  | 2.6150          |
| 2.6242        | 0.4961 | 700  | 2.5856          |
| 2.6444        | 0.5670 | 800  | 2.5701          |
| 2.6007        | 0.6378 | 900  | 2.5540          |
| 2.462         | 0.7087 | 1000 | 2.5418          |
| 2.5641        | 0.7796 | 1100 | 2.5315          |
| 2.4672        | 0.8505 | 1200 | 2.5238          |
| 2.5017        | 0.9213 | 1300 | 2.5146          |
| 2.6389        | 0.9922 | 1400 | 2.5083          |
| 2.4869        | 1.0631 | 1500 | 2.5021          |
| 2.5302        | 1.1339 | 1600 | 2.4942          |
| 2.497         | 1.2048 | 1700 | 2.4886          |
| 2.4965        | 1.2757 | 1800 | 2.4846          |
| 2.5535        | 1.3466 | 1900 | 2.4783          |
| 2.5747        | 1.4174 | 2000 | 2.4732          |
| 2.4534        | 1.4883 | 2100 | 2.4679          |
| 2.4909        | 1.5592 | 2200 | 2.4657          |
| 2.5192        | 1.6300 | 2300 | 2.4617          |
| 2.4271        | 1.7009 | 2400 | 2.4573          |
| 2.4855        | 1.7718 | 2500 | 2.4542          |
| 2.4599        | 1.8427 | 2600 | 2.4530          |
| 2.4482        | 1.9135 | 2700 | 2.4444          |
| 2.493         | 1.9844 | 2800 | 2.4446          |
| 2.3527        | 2.0553 | 2900 | 2.4414          |
| 2.5243        | 2.1262 | 3000 | 2.4376          |
| 2.4644        | 2.1970 | 3100 | 2.4330          |
| 2.386         | 2.2679 | 3200 | 2.4308          |
| 2.3762        | 2.3388 | 3300 | 2.4281          |
| 2.3827        | 2.4096 | 3400 | 2.4245          |
| 2.3487        | 2.4805 | 3500 | 2.4221          |
| 2.4737        | 2.5514 | 3600 | 2.4192          |
| 2.4907        | 2.6223 | 3700 | 2.4171          |
| 2.3967        | 2.6931 | 3800 | 2.4159          |
| 2.4772        | 2.7640 | 3900 | 2.4146          |
| 2.4114        | 2.8349 | 4000 | 2.4106          |
| 2.4017        | 2.9057 | 4100 | 2.4065          |
| 2.3477        | 2.9766 | 4200 | 2.4059          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1