File size: 2,005 Bytes
ac34bcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: other
base_model: apple/mobilevit-x-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tebak-gambar-mobilevit
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tebak-gambar-mobilevit

This model is a fine-tuned version of [apple/mobilevit-x-small](https://huggingface.co/apple/mobilevit-x-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0799
- Accuracy: 0.7289

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 1.5084        | 0.2844 | 5000  | 1.4700          | 0.6364   |
| 1.3684        | 0.5689 | 10000 | 1.3353          | 0.6674   |
| 1.3568        | 0.8533 | 15000 | 1.2764          | 0.6804   |
| 1.226         | 1.1377 | 20000 | 1.2323          | 0.6924   |
| 1.2125        | 1.4222 | 25000 | 1.1850          | 0.7031   |
| 1.1912        | 1.7066 | 30000 | 1.1567          | 0.7092   |
| 1.1902        | 1.9910 | 35000 | 1.1297          | 0.7165   |
| 1.131         | 2.2754 | 40000 | 1.1106          | 0.7213   |
| 1.124         | 2.5599 | 45000 | 1.0916          | 0.7258   |
| 1.1245        | 2.8443 | 50000 | 1.0782          | 0.7300   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1