Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +96 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.68 +/- 0.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1572529f4856e0d64dc8c8cfe958dd429e9473384b8d50ddc464eca59c3b65e
|
3 |
+
size 109494
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9c9626e040>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f9c9626d120>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
26 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
27 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
28 |
+
"_shape": null,
|
29 |
+
"dtype": null,
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
3
|
38 |
+
],
|
39 |
+
"low": "[-1. -1. -1.]",
|
40 |
+
"high": "[1. 1. 1.]",
|
41 |
+
"bounded_below": "[ True True True]",
|
42 |
+
"bounded_above": "[ True True True]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 1000000,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1674271640537549522,
|
52 |
+
"learning_rate": 0.001,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8n/cPp94gDz7jgw/8n/cPp94gDz7jgw/8n/cPp94gDz7jgw/8n/cPp94gDz7jgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkLEsv/hvMz9AayU+KguRv27GdD8ZZUY/r1h7PyyVab+6JtW/pgMmP0AMpz+36ey+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyf9w+n3iAPPuODD9dDMg9RUKsOnFXlj3yf9w+n3iAPPuODD9dDMg9RUKsOnFXlj3yf9w+n3iAPPuODD9dDMg9RUKsOnFXlj3yf9w+n3iAPPuODD9dDMg9RUKsOnFXlj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.43066365 0.01568252 0.5490567 ]\n [0.43066365 0.01568252 0.5490567 ]\n [0.43066365 0.01568252 0.5490567 ]\n [0.43066365 0.01568252 0.5490567 ]]",
|
62 |
+
"desired_goal": "[[-0.6745844 0.70092726 0.16154194]\n [-1.1331532 0.9561528 0.7749801 ]\n [ 0.98182195 -0.91243243 -1.6652443 ]\n [ 0.6484932 1.3050613 -0.4627206 ]]",
|
63 |
+
"observation": "[[0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]\n [0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]\n [0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]\n [0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]]"
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
+
},
|
69 |
+
"_last_original_obs": {
|
70 |
+
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcCmPvWzl6r1gDZI+/c0OvsyKhb0so4g+faCLPLuwLT1gcyk+4XS3u9H+Ur2lCZg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.06990325 -0.1146954 0.2852583 ]\n [-0.13945766 -0.06520614 0.2668699 ]\n [ 0.0170443 0.04240487 0.16547918]\n [-0.00559865 -0.05151254 0.29694858]]",
|
74 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
+
},
|
76 |
+
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
+
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": 0.0,
|
80 |
+
"ep_info_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVKcDWU8t7L+UhpRSlIwBbJRLMowBdJRHQKW13GZuyeJ1fZQoaAZoCWgPQwhPIy2VtyPwv5SGlFKUaBVLMmgWR0CltZxhc7hfdX2UKGgGaAloD0MIzT6PUZ758b+UhpRSlGgVSzJoFkdApbVhUm2LHnV9lChoBmgJaA9DCF7XL9gN29W/lIaUUpRoFUsyaBZHQKW1IDifg751fZQoaAZoCWgPQwgN4C2QoHjxv5SGlFKUaBVLMmgWR0CltumQ0XP7dX2UKGgGaAloD0MIhSNIpdjR5L+UhpRSlGgVSzJoFkdApbapaaCtinV9lChoBmgJaA9DCP8lqUwxR/K/lIaUUpRoFUsyaBZHQKW2bns9jgB1fZQoaAZoCWgPQwir7Sb4pmn3v5SGlFKUaBVLMmgWR0Clti2gezUrdX2UKGgGaAloD0MI3ZiesMSD8L+UhpRSlGgVSzJoFkdApbf3fVI7NnV9lChoBmgJaA9DCLt7gO7LmfW/lIaUUpRoFUsyaBZHQKW3t10T1011fZQoaAZoCWgPQwirCaLuA5DXv5SGlFKUaBVLMmgWR0Clt3xTbWVedX2UKGgGaAloD0MI8Ui8PJ2r5L+UhpRSlGgVSzJoFkdApbc7cbiqAHV9lChoBmgJaA9DCK/uWGyTCuW/lIaUUpRoFUsyaBZHQKW5COIZZSx1fZQoaAZoCWgPQwg2kZkLXB7wv5SGlFKUaBVLMmgWR0CluMjO1OTJdX2UKGgGaAloD0MIgSOBBpt69r+UhpRSlGgVSzJoFkdApbiN21UlzHV9lChoBmgJaA9DCN53DI/9LNi/lIaUUpRoFUsyaBZHQKW4TMIu5Bl1fZQoaAZoCWgPQwiyDdyBOuXkv5SGlFKUaBVLMmgWR0CluhpOFg2IdX2UKGgGaAloD0MIm+Wy0Tk/9L+UhpRSlGgVSzJoFkdApbnaG34KyHV9lChoBmgJaA9DCGixFMlXAu+/lIaUUpRoFUsyaBZHQKW5nw5vLox1fZQoaAZoCWgPQwj2evfHe9XOv5SGlFKUaBVLMmgWR0CluV3yAhB7dX2UKGgGaAloD0MIYMyWrIpw5L+UhpRSlGgVSzJoFkdApbsjgZTAFnV9lChoBmgJaA9DCDIiUWhZ9+C/lIaUUpRoFUsyaBZHQKW642YOUdJ1fZQoaAZoCWgPQwhfQC/cuTDav5SGlFKUaBVLMmgWR0Cluqhrvb48dX2UKGgGaAloD0MIU5J1OLoK87+UhpRSlGgVSzJoFkdApbpnnMdLhHV9lChoBmgJaA9DCPA1BMdlXOa/lIaUUpRoFUsyaBZHQKW8UfOD8Lt1fZQoaAZoCWgPQwjJHTaRmQvqv5SGlFKUaBVLMmgWR0ClvBG6f8MvdX2UKGgGaAloD0MI+nyUEReA6b+UhpRSlGgVSzJoFkdApbvWrsByS3V9lChoBmgJaA9DCJih8UQQ5+S/lIaUUpRoFUsyaBZHQKW7lmCiAUd1fZQoaAZoCWgPQwhaSMDo8ubnv5SGlFKUaBVLMmgWR0ClvV6v7m+1dX2UKGgGaAloD0MIOe6UDtZ/5L+UhpRSlGgVSzJoFkdApb0ek56t1nV9lChoBmgJaA9DCJ+vWS4bHei/lIaUUpRoFUsyaBZHQKW85E4Nqg11fZQoaAZoCWgPQwjv4v24/fLwv5SGlFKUaBVLMmgWR0ClvKRMewLWdX2UKGgGaAloD0MIlNkgk4wc4r+UhpRSlGgVSzJoFkdApb5tYU34sXV9lChoBmgJaA9DCH+D9urjodO/lIaUUpRoFUsyaBZHQKW+LY9Pk7x1fZQoaAZoCWgPQwh1j2yummfov5SGlFKUaBVLMmgWR0ClvfKrilzmdX2UKGgGaAloD0MIG2X9ZmK60L+UhpRSlGgVSzJoFkdApb2xqCYkV3V9lChoBmgJaA9DCPSkTGpog+O/lIaUUpRoFUsyaBZHQKW/f35eqrB1fZQoaAZoCWgPQwiCqzyBsJPxv5SGlFKUaBVLMmgWR0Clvz9fsu3+dX2UKGgGaAloD0MIHQJHAg0267+UhpRSlGgVSzJoFkdApb8EY4yXU3V9lChoBmgJaA9DCHGPpQ9d0Om/lIaUUpRoFUsyaBZHQKW+w1E3Kjl1fZQoaAZoCWgPQwhzDwnf+5vnv5SGlFKUaBVLMmgWR0ClwIfvF3pwdX2UKGgGaAloD0MIJH1aRX/o4r+UhpRSlGgVSzJoFkdApcBHvQWvbHV9lChoBmgJaA9DCFVszOuIQ+K/lIaUUpRoFUsyaBZHQKXADL39JjF1fZQoaAZoCWgPQwjUDKmieBXqv5SGlFKUaBVLMmgWR0Clv8vgNwzddX2UKGgGaAloD0MIPrFOle8Z7L+UhpRSlGgVSzJoFkdApcGS5byH23V9lChoBmgJaA9DCOpae5+qwuC/lIaUUpRoFUsyaBZHQKXBUu8scyZ1fZQoaAZoCWgPQwjlfLH34ovuv5SGlFKUaBVLMmgWR0ClwRgQYk3TdX2UKGgGaAloD0MI6j2V056S8b+UhpRSlGgVSzJoFkdApcDXGp++d3V9lChoBmgJaA9DCJZcxeI3Bee/lIaUUpRoFUsyaBZHQKXCpm/WUbF1fZQoaAZoCWgPQwjfisQENfzuv5SGlFKUaBVLMmgWR0ClwmYO2AoYdX2UKGgGaAloD0MIZLK4/8h057+UhpRSlGgVSzJoFkdApcIrAYYR/XV9lChoBmgJaA9DCCY1tAHYgOm/lIaUUpRoFUsyaBZHQKXB6gK4QSV1fZQoaAZoCWgPQwh8e9egLz3jv5SGlFKUaBVLMmgWR0Clw+OzposadX2UKGgGaAloD0MIspsZ/Wi46L+UhpRSlGgVSzJoFkdApcOkQumJnHV9lChoBmgJaA9DCAte9BWkGdO/lIaUUpRoFUsyaBZHQKXDaSKWLP51fZQoaAZoCWgPQwg8S5ARUOHXv5SGlFKUaBVLMmgWR0ClwyhLf1pTdX2UKGgGaAloD0MIqYWSyamd6r+UhpRSlGgVSzJoFkdApcUZ+BpYcXV9lChoBmgJaA9DCF6iemtgK/G/lIaUUpRoFUsyaBZHQKXE2r3Cbc51fZQoaAZoCWgPQwjwhjQqcDLkv5SGlFKUaBVLMmgWR0ClxJ/D+BH1dX2UKGgGaAloD0MI7dPxmIHK6b+UhpRSlGgVSzJoFkdApcRe6VdHD3V9lChoBmgJaA9DCGw/GePDbOi/lIaUUpRoFUsyaBZHQKXGQZ62OQ11fZQoaAZoCWgPQwhYcaq1MEvwv5SGlFKUaBVLMmgWR0ClxgF6zE75dX2UKGgGaAloD0MI3gVKCiyA6r+UhpRSlGgVSzJoFkdApcXGb3Gn43V9lChoBmgJaA9DCIBiZMkcS+m/lIaUUpRoFUsyaBZHQKXFhZdv8651fZQoaAZoCWgPQwiaCBueXinpv5SGlFKUaBVLMmgWR0Clx1BqsU7CdX2UKGgGaAloD0MI0A64rpjR8r+UhpRSlGgVSzJoFkdApccQKjSG8HV9lChoBmgJaA9DCDxsIjMXuNe/lIaUUpRoFUsyaBZHQKXG1U4JeE91fZQoaAZoCWgPQwhybD1DOGbzv5SGlFKUaBVLMmgWR0ClxpQ40dildX2UKGgGaAloD0MIHy3OGOaE7r+UhpRSlGgVSzJoFkdApciH0I1LrXV9lChoBmgJaA9DCNlAuti0UuW/lIaUUpRoFUsyaBZHQKXIR8JD3M91fZQoaAZoCWgPQwjb/L/qyBH6v5SGlFKUaBVLMmgWR0ClyA2vStvGdX2UKGgGaAloD0MIw9fXutQI2r+UhpRSlGgVSzJoFkdApcfMyDZlF3V9lChoBmgJaA9DCPYlGw+22N2/lIaUUpRoFUsyaBZHQKXJmsGxD9h1fZQoaAZoCWgPQwh3n+OjxZnhv5SGlFKUaBVLMmgWR0ClyVssg+yJdX2UKGgGaAloD0MI4ng+A+rN7b+UhpRSlGgVSzJoFkdApckhUzbeuXV9lChoBmgJaA9DCNZwkXu6evC/lIaUUpRoFUsyaBZHQKXI4ZiuuA91fZQoaAZoCWgPQwgpe0s5X2zuv5SGlFKUaBVLMmgWR0ClyrEA5q/NdX2UKGgGaAloD0MIfxXgu82b5b+UhpRSlGgVSzJoFkdApcpwmVqveXV9lChoBmgJaA9DCITZBBiWP+G/lIaUUpRoFUsyaBZHQKXKNWvr4WV1fZQoaAZoCWgPQwgsYthhTHrov5SGlFKUaBVLMmgWR0ClyfR9XtBwdX2UKGgGaAloD0MIlWBxOPOr27+UhpRSlGgVSzJoFkdApcvEKeCkGnV9lChoBmgJaA9DCKvMlNbfEua/lIaUUpRoFUsyaBZHQKXLg++M6zV1fZQoaAZoCWgPQwhENpAuNq3Kv5SGlFKUaBVLMmgWR0Cly0kOI68ydX2UKGgGaAloD0MIxCEbSBeb1b+UhpRSlGgVSzJoFkdApcsIHVwxWXV9lChoBmgJaA9DCDIDlfHvM8a/lIaUUpRoFUsyaBZHQKXM5KDkELZ1fZQoaAZoCWgPQwh9BP7w81/hv5SGlFKUaBVLMmgWR0ClzKR77bcodX2UKGgGaAloD0MIJcreUs4Xzb+UhpRSlGgVSzJoFkdApcxppaiblXV9lChoBmgJaA9DCATG+gYmt+W/lIaUUpRoFUsyaBZHQKXMKOBlMAZ1fZQoaAZoCWgPQwiPUDOkiuLrv5SGlFKUaBVLMmgWR0ClzhlV94NadX2UKGgGaAloD0MIJoqQup395L+UhpRSlGgVSzJoFkdApc3ZD7ZWaXV9lChoBmgJaA9DCJuuJ7ou/PO/lIaUUpRoFUsyaBZHQKXNnmjCYTl1fZQoaAZoCWgPQwidK0oJwartv5SGlFKUaBVLMmgWR0ClzV3OGCZndX2UKGgGaAloD0MI9dbAVgkW5b+UhpRSlGgVSzJoFkdApc8pVU+9rXV9lChoBmgJaA9DCE7v4v24/da/lIaUUpRoFUsyaBZHQKXO6ULUkOZ1fZQoaAZoCWgPQwjtgywLJv7jv5SGlFKUaBVLMmgWR0Clzq5Ig/1QdX2UKGgGaAloD0MIlzrI68Ek57+UhpRSlGgVSzJoFkdApc5tQl8gIXV9lChoBmgJaA9DCBIWFXE6ifK/lIaUUpRoFUsyaBZHQKXQP0cwQDp1fZQoaAZoCWgPQwjp7job8s/mv5SGlFKUaBVLMmgWR0Clz/7X6InCdX2UKGgGaAloD0MIZ7rXSX1Z4L+UhpRSlGgVSzJoFkdApc/DzXjEN3V9lChoBmgJaA9DCOIFEalpF96/lIaUUpRoFUsyaBZHQKXPguyu6mR1ZS4="
|
83 |
+
},
|
84 |
+
"ep_success_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
+
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
+
"gamma": 0.95,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
+
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
+
"max_grad_norm": 0.5,
|
95 |
+
"normalize_advantage": false
|
96 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fdcaeef0db2179b77d528ffbf7d8eaea5023ce60a0ed46c0ee9b6f84e66bf5f
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e74995d22a5ea676984f0cbed48df63f7f1a087cc7aaac5329134438dbc38dee
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9c9626e040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9c9626d120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674271640537549522, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8n/cPp94gDz7jgw/8n/cPp94gDz7jgw/8n/cPp94gDz7jgw/8n/cPp94gDz7jgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkLEsv/hvMz9AayU+KguRv27GdD8ZZUY/r1h7PyyVab+6JtW/pgMmP0AMpz+36ey+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyf9w+n3iAPPuODD9dDMg9RUKsOnFXlj3yf9w+n3iAPPuODD9dDMg9RUKsOnFXlj3yf9w+n3iAPPuODD9dDMg9RUKsOnFXlj3yf9w+n3iAPPuODD9dDMg9RUKsOnFXlj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43066365 0.01568252 0.5490567 ]\n [0.43066365 0.01568252 0.5490567 ]\n [0.43066365 0.01568252 0.5490567 ]\n [0.43066365 0.01568252 0.5490567 ]]", "desired_goal": "[[-0.6745844 0.70092726 0.16154194]\n [-1.1331532 0.9561528 0.7749801 ]\n [ 0.98182195 -0.91243243 -1.6652443 ]\n [ 0.6484932 1.3050613 -0.4627206 ]]", "observation": "[[0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]\n [0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]\n [0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]\n [0.43066365 0.01568252 0.5490567 0.09767983 0.00131423 0.07340897]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcCmPvWzl6r1gDZI+/c0OvsyKhb0so4g+faCLPLuwLT1gcyk+4XS3u9H+Ur2lCZg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06990325 -0.1146954 0.2852583 ]\n [-0.13945766 -0.06520614 0.2668699 ]\n [ 0.0170443 0.04240487 0.16547918]\n [-0.00559865 -0.05151254 0.29694858]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVKcDWU8t7L+UhpRSlIwBbJRLMowBdJRHQKW13GZuyeJ1fZQoaAZoCWgPQwhPIy2VtyPwv5SGlFKUaBVLMmgWR0CltZxhc7hfdX2UKGgGaAloD0MIzT6PUZ758b+UhpRSlGgVSzJoFkdApbVhUm2LHnV9lChoBmgJaA9DCF7XL9gN29W/lIaUUpRoFUsyaBZHQKW1IDifg751fZQoaAZoCWgPQwgN4C2QoHjxv5SGlFKUaBVLMmgWR0CltumQ0XP7dX2UKGgGaAloD0MIhSNIpdjR5L+UhpRSlGgVSzJoFkdApbapaaCtinV9lChoBmgJaA9DCP8lqUwxR/K/lIaUUpRoFUsyaBZHQKW2bns9jgB1fZQoaAZoCWgPQwir7Sb4pmn3v5SGlFKUaBVLMmgWR0Clti2gezUrdX2UKGgGaAloD0MI3ZiesMSD8L+UhpRSlGgVSzJoFkdApbf3fVI7NnV9lChoBmgJaA9DCLt7gO7LmfW/lIaUUpRoFUsyaBZHQKW3t10T1011fZQoaAZoCWgPQwirCaLuA5DXv5SGlFKUaBVLMmgWR0Clt3xTbWVedX2UKGgGaAloD0MI8Ui8PJ2r5L+UhpRSlGgVSzJoFkdApbc7cbiqAHV9lChoBmgJaA9DCK/uWGyTCuW/lIaUUpRoFUsyaBZHQKW5COIZZSx1fZQoaAZoCWgPQwg2kZkLXB7wv5SGlFKUaBVLMmgWR0CluMjO1OTJdX2UKGgGaAloD0MIgSOBBpt69r+UhpRSlGgVSzJoFkdApbiN21UlzHV9lChoBmgJaA9DCN53DI/9LNi/lIaUUpRoFUsyaBZHQKW4TMIu5Bl1fZQoaAZoCWgPQwiyDdyBOuXkv5SGlFKUaBVLMmgWR0CluhpOFg2IdX2UKGgGaAloD0MIm+Wy0Tk/9L+UhpRSlGgVSzJoFkdApbnaG34KyHV9lChoBmgJaA9DCGixFMlXAu+/lIaUUpRoFUsyaBZHQKW5nw5vLox1fZQoaAZoCWgPQwj2evfHe9XOv5SGlFKUaBVLMmgWR0CluV3yAhB7dX2UKGgGaAloD0MIYMyWrIpw5L+UhpRSlGgVSzJoFkdApbsjgZTAFnV9lChoBmgJaA9DCDIiUWhZ9+C/lIaUUpRoFUsyaBZHQKW642YOUdJ1fZQoaAZoCWgPQwhfQC/cuTDav5SGlFKUaBVLMmgWR0Cluqhrvb48dX2UKGgGaAloD0MIU5J1OLoK87+UhpRSlGgVSzJoFkdApbpnnMdLhHV9lChoBmgJaA9DCPA1BMdlXOa/lIaUUpRoFUsyaBZHQKW8UfOD8Lt1fZQoaAZoCWgPQwjJHTaRmQvqv5SGlFKUaBVLMmgWR0ClvBG6f8MvdX2UKGgGaAloD0MI+nyUEReA6b+UhpRSlGgVSzJoFkdApbvWrsByS3V9lChoBmgJaA9DCJih8UQQ5+S/lIaUUpRoFUsyaBZHQKW7lmCiAUd1fZQoaAZoCWgPQwhaSMDo8ubnv5SGlFKUaBVLMmgWR0ClvV6v7m+1dX2UKGgGaAloD0MIOe6UDtZ/5L+UhpRSlGgVSzJoFkdApb0ek56t1nV9lChoBmgJaA9DCJ+vWS4bHei/lIaUUpRoFUsyaBZHQKW85E4Nqg11fZQoaAZoCWgPQwjv4v24/fLwv5SGlFKUaBVLMmgWR0ClvKRMewLWdX2UKGgGaAloD0MIlNkgk4wc4r+UhpRSlGgVSzJoFkdApb5tYU34sXV9lChoBmgJaA9DCH+D9urjodO/lIaUUpRoFUsyaBZHQKW+LY9Pk7x1fZQoaAZoCWgPQwh1j2yummfov5SGlFKUaBVLMmgWR0ClvfKrilzmdX2UKGgGaAloD0MIG2X9ZmK60L+UhpRSlGgVSzJoFkdApb2xqCYkV3V9lChoBmgJaA9DCPSkTGpog+O/lIaUUpRoFUsyaBZHQKW/f35eqrB1fZQoaAZoCWgPQwiCqzyBsJPxv5SGlFKUaBVLMmgWR0Clvz9fsu3+dX2UKGgGaAloD0MIHQJHAg0267+UhpRSlGgVSzJoFkdApb8EY4yXU3V9lChoBmgJaA9DCHGPpQ9d0Om/lIaUUpRoFUsyaBZHQKW+w1E3Kjl1fZQoaAZoCWgPQwhzDwnf+5vnv5SGlFKUaBVLMmgWR0ClwIfvF3pwdX2UKGgGaAloD0MIJH1aRX/o4r+UhpRSlGgVSzJoFkdApcBHvQWvbHV9lChoBmgJaA9DCFVszOuIQ+K/lIaUUpRoFUsyaBZHQKXADL39JjF1fZQoaAZoCWgPQwjUDKmieBXqv5SGlFKUaBVLMmgWR0Clv8vgNwzddX2UKGgGaAloD0MIPrFOle8Z7L+UhpRSlGgVSzJoFkdApcGS5byH23V9lChoBmgJaA9DCOpae5+qwuC/lIaUUpRoFUsyaBZHQKXBUu8scyZ1fZQoaAZoCWgPQwjlfLH34ovuv5SGlFKUaBVLMmgWR0ClwRgQYk3TdX2UKGgGaAloD0MI6j2V056S8b+UhpRSlGgVSzJoFkdApcDXGp++d3V9lChoBmgJaA9DCJZcxeI3Bee/lIaUUpRoFUsyaBZHQKXCpm/WUbF1fZQoaAZoCWgPQwjfisQENfzuv5SGlFKUaBVLMmgWR0ClwmYO2AoYdX2UKGgGaAloD0MIZLK4/8h057+UhpRSlGgVSzJoFkdApcIrAYYR/XV9lChoBmgJaA9DCCY1tAHYgOm/lIaUUpRoFUsyaBZHQKXB6gK4QSV1fZQoaAZoCWgPQwh8e9egLz3jv5SGlFKUaBVLMmgWR0Clw+OzposadX2UKGgGaAloD0MIspsZ/Wi46L+UhpRSlGgVSzJoFkdApcOkQumJnHV9lChoBmgJaA9DCAte9BWkGdO/lIaUUpRoFUsyaBZHQKXDaSKWLP51fZQoaAZoCWgPQwg8S5ARUOHXv5SGlFKUaBVLMmgWR0ClwyhLf1pTdX2UKGgGaAloD0MIqYWSyamd6r+UhpRSlGgVSzJoFkdApcUZ+BpYcXV9lChoBmgJaA9DCF6iemtgK/G/lIaUUpRoFUsyaBZHQKXE2r3Cbc51fZQoaAZoCWgPQwjwhjQqcDLkv5SGlFKUaBVLMmgWR0ClxJ/D+BH1dX2UKGgGaAloD0MI7dPxmIHK6b+UhpRSlGgVSzJoFkdApcRe6VdHD3V9lChoBmgJaA9DCGw/GePDbOi/lIaUUpRoFUsyaBZHQKXGQZ62OQ11fZQoaAZoCWgPQwhYcaq1MEvwv5SGlFKUaBVLMmgWR0ClxgF6zE75dX2UKGgGaAloD0MI3gVKCiyA6r+UhpRSlGgVSzJoFkdApcXGb3Gn43V9lChoBmgJaA9DCIBiZMkcS+m/lIaUUpRoFUsyaBZHQKXFhZdv8651fZQoaAZoCWgPQwiaCBueXinpv5SGlFKUaBVLMmgWR0Clx1BqsU7CdX2UKGgGaAloD0MI0A64rpjR8r+UhpRSlGgVSzJoFkdApccQKjSG8HV9lChoBmgJaA9DCDxsIjMXuNe/lIaUUpRoFUsyaBZHQKXG1U4JeE91fZQoaAZoCWgPQwhybD1DOGbzv5SGlFKUaBVLMmgWR0ClxpQ40dildX2UKGgGaAloD0MIHy3OGOaE7r+UhpRSlGgVSzJoFkdApciH0I1LrXV9lChoBmgJaA9DCNlAuti0UuW/lIaUUpRoFUsyaBZHQKXIR8JD3M91fZQoaAZoCWgPQwjb/L/qyBH6v5SGlFKUaBVLMmgWR0ClyA2vStvGdX2UKGgGaAloD0MIw9fXutQI2r+UhpRSlGgVSzJoFkdApcfMyDZlF3V9lChoBmgJaA9DCPYlGw+22N2/lIaUUpRoFUsyaBZHQKXJmsGxD9h1fZQoaAZoCWgPQwh3n+OjxZnhv5SGlFKUaBVLMmgWR0ClyVssg+yJdX2UKGgGaAloD0MI4ng+A+rN7b+UhpRSlGgVSzJoFkdApckhUzbeuXV9lChoBmgJaA9DCNZwkXu6evC/lIaUUpRoFUsyaBZHQKXI4ZiuuA91fZQoaAZoCWgPQwgpe0s5X2zuv5SGlFKUaBVLMmgWR0ClyrEA5q/NdX2UKGgGaAloD0MIfxXgu82b5b+UhpRSlGgVSzJoFkdApcpwmVqveXV9lChoBmgJaA9DCITZBBiWP+G/lIaUUpRoFUsyaBZHQKXKNWvr4WV1fZQoaAZoCWgPQwgsYthhTHrov5SGlFKUaBVLMmgWR0ClyfR9XtBwdX2UKGgGaAloD0MIlWBxOPOr27+UhpRSlGgVSzJoFkdApcvEKeCkGnV9lChoBmgJaA9DCKvMlNbfEua/lIaUUpRoFUsyaBZHQKXLg++M6zV1fZQoaAZoCWgPQwhENpAuNq3Kv5SGlFKUaBVLMmgWR0Cly0kOI68ydX2UKGgGaAloD0MIxCEbSBeb1b+UhpRSlGgVSzJoFkdApcsIHVwxWXV9lChoBmgJaA9DCDIDlfHvM8a/lIaUUpRoFUsyaBZHQKXM5KDkELZ1fZQoaAZoCWgPQwh9BP7w81/hv5SGlFKUaBVLMmgWR0ClzKR77bcodX2UKGgGaAloD0MIJcreUs4Xzb+UhpRSlGgVSzJoFkdApcxppaiblXV9lChoBmgJaA9DCATG+gYmt+W/lIaUUpRoFUsyaBZHQKXMKOBlMAZ1fZQoaAZoCWgPQwiPUDOkiuLrv5SGlFKUaBVLMmgWR0ClzhlV94NadX2UKGgGaAloD0MIJoqQup395L+UhpRSlGgVSzJoFkdApc3ZD7ZWaXV9lChoBmgJaA9DCJuuJ7ou/PO/lIaUUpRoFUsyaBZHQKXNnmjCYTl1fZQoaAZoCWgPQwidK0oJwartv5SGlFKUaBVLMmgWR0ClzV3OGCZndX2UKGgGaAloD0MI9dbAVgkW5b+UhpRSlGgVSzJoFkdApc8pVU+9rXV9lChoBmgJaA9DCE7v4v24/da/lIaUUpRoFUsyaBZHQKXO6ULUkOZ1fZQoaAZoCWgPQwjtgywLJv7jv5SGlFKUaBVLMmgWR0Clzq5Ig/1QdX2UKGgGaAloD0MIlzrI68Ek57+UhpRSlGgVSzJoFkdApc5tQl8gIXV9lChoBmgJaA9DCBIWFXE6ifK/lIaUUpRoFUsyaBZHQKXQP0cwQDp1fZQoaAZoCWgPQwjp7job8s/mv5SGlFKUaBVLMmgWR0Clz/7X6InCdX2UKGgGaAloD0MIZ7rXSX1Z4L+UhpRSlGgVSzJoFkdApc/DzXjEN3V9lChoBmgJaA9DCOIFEalpF96/lIaUUpRoFUsyaBZHQKXPguyu6mR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.95, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (290 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.6838658650172874, "std_reward": 0.20782242446213206, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T04:13:56.580602"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4842392e976c5b207034396f23099b058ebe1f8ed4397eafa48f0732d183361
|
3 |
+
size 3056
|